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A. Block Coding and Synchronization Study: tion path affect both signals the lame way. For complete-

Subcarrier Tracking Methods and ness, several mr.thuds of great practical importance are
discussed below.

Communication System Design, w. c. Lindsey

I. Introduction First, we have differential phase-shift keying (DPSK).

Various eomm'mieation systems, e.g., binary PSK, trans- In a DPSK system the PSK signal serves as the data signal
mit information in the form s (t) = (.,o),_Am (t) sin (o,,,t+ 0). and the reference signal. The phase of the signal received
In order that the received signal be demodulated coher- during one signaling interval serves as a reference for the
ently, it is necessary to determine or estimate the phase 0 next keying interval. The kineplex (Hcf. 1) is an example

of a system which has been mechanized.and frequency of the subcarrier (2)'_sin (o,,,t+ 0) with as
little error as possible. If the signal s (t) oontains a residual *
component of sufficient strength at t:.e subcarrier fre- Second, we have the _o.called adjacent tone reference
quency, this component could be tracked with a narrow- PSK system (AT-PSK). The reC_rence signal for this sys-
band phase-locked loop and used to provide the desired tern is transmitted at an adjacent frequency simuitane-
reference signal. On the other hand, the power contained ously with the keyed signal. At the receiver, the phase of
in the _esidual o0mponent represents power which does the reference is adjusted to cc-npemate for the frequency
nor convey any information other than the frequency and difference between the reference signal and the phase-
phase of the st,heartier. Thus, it represents power not keyed signal. A practical system which employs this prin-
available for the transmission of data, and, in practice, it ciple is illustrated by the DEF'/system (Ref. o.)
is always of interest to investigate techniques which con-
serve and save power. Third is a system referred to as the quadratture refer- , ,

ence PSK system (Q-PSK). In this system,the phase of
Several p_..etical methods are avaihble which rely one quadrature component is modulated with the data

upon the transmi_ion of a reference signal. For example, stream while the phase of the in-phase component renm/m
the phase refereace may be trar_mltted along with a unkeyed. The gathryn system is an example of this teeh-
PSK signal, and in _:'der to maintain proper phase- n/que (Ik,f. 3).
r/admm/zattoa, the phase.keyed signal and the reference
Idg=al must be clo-.e to each other in fi'equency and in Finally, the m-adled _ed me_ur_It
time inch that any channel fluctuatiom along the propqa- PSK (DDM-PSK) technique is employed. This system
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reconstructs a reference signal t):" estimating the modula- of the PLL is divided by two. a coherent reference signal

tion itself and using this estimate to eliminate it from the is available for demodulation purposes.

received signal. The decision directed system is, in essence,

a generalization of tile DPSK system, which uses the pie- In deciding upon a method of determining the per-
vious signaling interval. A comlmter sinmlation of this forinance of the squaring loop. a significant parameter is

type of system has been carried out by Proakis, Drouilhet, the handwidth of the bandpass filter whose transfer func-

and Price (Ref. 4). More recently Bussgan R and Leiter tion is denoted by tt, (p), and p is the Heaviside operator.

(Ref. 5)derived the performance of a communication svs- In fact. if the input is contaminated by white ne;_e of
tern in which a reference signal is transmitted at a fre- spectral density N. w cycle single-sided, and if the band-

quency adjacent to the phase-keyed tone. Also, Bussgang width of the filter is so large that the correlation time r,

and Leiter report results pertinent to the problem of the of its output noise is much smaller than the time constant

joint occurrence of two character errors on a nmltiple 1/tcL of the phase-locked loop,' the squaring-loop may be
phase-keyed signal, analyzed by using the mathematical techniques available

from the theory of Markov processes-in particular, the

A number of methods have been proposed for generat- Fokker-Planck equation, Ref. 11.
ing a reference subcarrier from the received signal even

when the residual subcarrier component is not available. As the bandwidth B, of the bandpass filter is narrowed,

This report analyzes and oompares two methods of great the correlation time r, of the output noise increases and
practical interest in deep-space work. The results of the may become equal or even greater than the time constant

analysis are used to establish the performance of phase- 1 ,'wL of the phase-locked loop. The cases when r, _ 1/wL

coherent communication systems which utilize such sub- are no less important in practice than the other extreme,
carrier tracking methods. The first, the squaring-loop when r, < 1/wL, However, the latter case is considered

method, has been analyzed in a number of papers, here for a constant frequency signal, and we neglect any
Refs. 6-9. The second method, originally proposed by spurious noise which may be generated due tc imperfect

Costas, is the Costas-loop (Ref. 10). This article establishes system oscillators. Such fluctuations may be included with
the performance of these two subcarrier tracking methods no great mathematical difficulty.
using the Fokker-Planck apparatus as opposed to using

linear tracking theory. The results are then used in pre- Let the observed data y (t) be denoted by
dicting the performance of uncoded and block-coded

col:_munication systems. The theory developed is useful
y(t) = (2)_,_Am(t)sin(_ot + O) + n(t) (1)

in the design and testing of subcarrier tracking loops and
data detectors.

where m (t) is the signal envelope, i.e., the modulation,
and let

2. The Squaring-Loop Method

n (t) = n, (t) cos (-ot + 0) + n, (t) sin (_ot + 0) (2)Of main concern here will be that of establishing a

coherent subcarrier reference for demodulation of 180-deg

PS.,Kmodulation. The mechanization of a typical squaring be a realization of narrowband noise process, where n, (t)
_oop is illustrated in Fig. 1. The received signal y (t) is and n_,(t) are sample functions of joint stationary Gaussian

bandpass filtered, squared to remove the modulation m (t), processes. We assume that the correlation time r, of the
and the resultant double frequency term is tracked by noise is small in comparison with the time constant of

means of a conventional phase-locked loop (PLL) whose the PLL, i.e., r. < < 1/wt.

noise bandwidth is wL cycles. When the output frequency
Assuming a perfect square-law characteristic, the out-

put process z (t) is related to the input process y (t) through

z (t)= [y(t)tt, (n)l' (s)

'Correhtion time of the random process {z(t)} Is defined by the
relation r = J';*!R. (r)ldr, where R,(r) is the normalized correla-
tion function of the process. The parameter r gives some idea of
the size of the time interval over which correlation extends between

Fig. !. The squaring loop veJuesof theprecis z(O.

272 JPL SPACE PROGRAMS SUMMARY 37-44, VOL. IV

1967019812-282



where H, (p) is the transfer fi,nction of tile bandpass filter On sul)stituting for y (t) into Eq. (3) and taking only the
and p : d dt is tile Heaviside operator, terms around 2.....yields, in operator form,

z(t) = H,(p){[-A-'m-'(t) + hi(t)2 n-',(t)2 (2)"-'Am(t)n"(t)lc°s(2°'"t" + 2_)

[(2)'_am (t) n, (t) + n, (t) n. (t)] sin (2o,,,t+ 20)_ (4)
!

The output of the multiplier is e (t) = K,,,z (t) r (t), where K,,, is the multiplier constant. A convenient representation for
r (t) is denoted by

/%

r(t) = (2)'_sin [2_,,t + 20] (5)

If one takes only those terms in the base band frequency region, the product r (t) z (t) becomes

K,,,Hf(p) {IA.,m...(t ) n_(t)-ni(t) + (2),,.,Am(t)n..(t)lsin[2(O - 8)]+[ (2)'_Am. (t)n_(t)z(t)r (t)- 9 2

+ n_(t) n: (t)] cos [2 (0 - 0)] ( (6)
te

The phase 0'(t) of the voltage control oscillator (VCO) output is related to its input through

g(t) K,._o- z (t) r (t) F (p) (7)
P

where Kvco is the VCO gain constant in rad/sec-v. Neglecting any doppler present (this will be small in practice) on 0 (t)
we have from Eqs. (6) and (7) the following stochastic differential equation of operation of a squaring loop, viz.,

K,,KvcoA:m: (t) H_(p) F (p) sin 24'
P4' + 2 = u (t, 4') (8)

where 4' = 0 - O'and

u(t, 4')=KvcoK,,F(p)H_(p){[.n_t) ,f_(t) (2)_Am(t)n2(t)]sin24' 19. 9. !

} '- [(2)UAm (t) n, (t) + n, (t) n._(t)] cos 2, (9)

If we let 4, = 24,, K = KvcoK,,, assume that over the bandwidth of significant interest that the filter H_ (p) :- 1, and con-
sider a first-order PLI,, i.e., F (p) = 1, we have

_ + KA2ra2(t)sin4, = K {In_t ) n:-:(t)2 (2)_/_Am(t)n"(t)] sin4"

(t)., (t) +., (t),_(t)]cos,_ (10)[(2)½Am
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We may now determine the probalfility density of q,, where I,,(x) is the modified Bessel function of zero order

using the Fokkt'r-Fhmck method. The equation ot opera- and of argument x. If we introduce tile change of variable
tion is of the form _i, F [,I,, u (,I,, t)] for which tile c_)rre- ,I, 24, and make use of the Jaeobian of the transforma-

sponding Fokker-Planek equation (lh't. 11) is, in the tim_, we find that

stationary case,

1 ,-' , P (_) -- exp [(AK/K.) cos 24)].- - =t,,(AKg) ' < =/2
27,I,-' [K.(cp)p(o,,)]- ;,i--;[K,(O,)p(¢)] : 0 (11) (15)

where As a first example of our results, assume that the normal-
i/cd correlation function of the envelope of the input

K, (d,,)= F [¢,u(_, t)] noise process possesses a Markov-type power spectrum
with variance a- - N.,B,, i.e.,

and

R,,, (,)= exp [-2B, Irl] = R,,_(r) (16)

K_.(q,) = {F [q,, u (¢, t)] F [,, t 4 ,)] - K; (q,)} d_

where B, is the one-sided bandwidth of the noise m (t)

or n. (t). Physically, Eq. (16) represents a noise source that
and the bar denotes statistical averaging over the en- has been generated by passing white noise through an

semble. If we make the assmnptions that ,I, is a slowh' RC filter which possesses a 3-db frequency of B,/2= Hz.

• varying process, m(t) :- ±1, we find from Eqs. (10) and Thus, K_.(_) in Eq. (12) becomes
(11) that

K, (,I,) = KA: sin ,1,

K,= 2K-'o." [ o-___+ A__1 (17)
and

f"K._,(*) = K-'a-' [d"R_, (r) + 2A'R,, (r)] dr and the solution in Eq. (15) is given by

(12)
p(_b) = exp [Deos2_]

where a'-' and R,_ (r) are, respectively, the variance and =I,,(D) ' 1¢1_#/2 (18)
the envelope of the correlation function of the noise com-

ponent in Eq. (2). They correspond to the variance and

correlation function of the independent processes n, (t) where

and n_.(t)in Eq. (2). Substitution of Eq. (12)into the xVl-1 {

partial differential equation given in Eq. (11) and using D =_/1---_2/ (19)
the boundary conditions L _y_]

f i p (_ ) d¢ = l and

2A" Bi

p (¢ + 2rr) = p (4,) (13) x = NowL ; Y wL

we have as a solution to Eq. (11) Here ,vt. is taken to be the bandwidth of the loop, as de-
fined from the linear PLL theory, i.e.,

exp cos

P (4') =
2-Io (AK/K,) I¢1< _r (14) wL = 2bt, = IH (s) l* ds = A'K/4 (20)
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where H (s) is the closed-loop transfer f,mction of the loop I !

in linearized form. The square of the signal amplitude A l¢(t) [ LOWPASS[ Yc(t)is present because of the squaring operation. "_ _ FCrERII I

As a second example, assume that _ ,

ylt) _ i

R, I (r) - Rn, (r) - sin _rB,r (21)z r n,r

then it is easy to show that ,/.,2 sin_]2_ ) ! I_FILT_s

o= _ l +-l/xy (22)
Fig. 2. The Costal-loop

where

signal to control the phase and frequency of the loop's
2A" WL VCO output.

x = N,,wL; Y Bi

If we denote the output of the upper loop multiplier

Other presquaring filters may be easily evaluated. The by z,. (t) and the output of the lower loop multiplier by
z, (t) (see Fig. 2) then the output z_(t) istwo examples given represent results for the limiting cases

of the class of Butterworth-type spectra.
zc(t) = u (t). (2)'/_cos(oot + _) (24)

If one assumes that 4) is small, then the distribution of

"i 4' becomes Gaussian with variance while the output of the low-pass filter becomes

{ [ I ]}-' [ n2(" 1 n, (t)o_ = V__ = x "1+ i/xy (23) y¢ (t) = Am (t) + (2)v2.] sin ck+ _ cos 4'

This result agrees with that obtained using linear PLL
theory (Refs. 1--4). The variance of the phase-error _, as when Eq. (1) is substituted into Eq. (24) and all double
determined from Eq. (14), is frequency terms are neglected. Similarly, the output y, (t)

} is given by

,_' (- 1/__ (o/ y,(t)= Am(t)+ _.1 cose - -_- sm_
g = -_o+ 4 k, Io(D) (26)k=l

where Ik (D) is the modified Bessel function of order k The control voltage z (¢) = y_(t) y, (t) becomes
and argument D. For large D, e_ approaches 1/D, as it

should. ( th (t)¥z(t)= _\as(t) +-_Ta-J sin2¢

t 3. TheCostas-toop n,(t) n.,(t)'_/'l + s24,In the Costas-loop shown in Fig. 2, the phase of the +._(Am(t)+_]k _o .)

t data subcarrier is extracted from the suppressedcarrier n,(t) _/Am(t)+ -_coP'@_
signal s (t) plus noise n (t) by multiplying the input volt- n, (t)'_ [ 1 - s
ages of the two phase detectors (multipliers) with that (2)v_ ('('('('_1_k' )
produced from the output of the VCO and a 90-deg phase n_ (t)
shift of that voltage, filtering the results and using this 4 sin 2_ (27)
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Now

= KvcoKmF(p)" z (t) (28)

and if we omit all dc terms, the stochastic differential equation which governs the behavior of the Costas-loop in the
presence of noise reduces to

)Fn_(t) n'.-'.,(t)
q, + KAzF (p) m_(t) sinq, = KF (p) I,L2 2

- (2)',_Am(t)n._,(t)]sin*-[f2)'J_An,(t)m(t)+n,(t)n,.(t)lcos*} (29)

If, in the previous case, we ignore the effects of the filter to-noise conditions the optimum presquaring filter given
H, (p), then the stochastic differential equation obtained by Eq. (30) becomes H, (s) _ k while for small signal-to-
for the squaring-loop method and the stochastic differ- noise conditions the optimum filter becomes
ential equation for the Costas-loop are identical. Thus.
the solution for p (4_)is identical, and the noise behavior

/2S, (p)¥/2 (31)
of the two circuits is the same. This, of course, assumes Hi (p)_\ N,, ]that the low-pass filter transfer functions can be obtained

_, by simply translating, by f,, Hz, the bandpass filter func-

tion of the squaring-loop. This says that for small signal-to-noise conditions the
optimum filter is matched to the signaling spectrum.

From this it may be concluded that the two approaches Arbitrarily setting k -= 1 says that the optimum filter for
to subcarrier tracking yield equivalent results when the large SNR is an ideal bandpass filter for which the per-
filters in the Costas-loop are the low-pass equivalents of formance has been accessed. On the other hand, for small

the bandpass filter in the squaring-loop. The choice of SNR the performance of the two loops may be accessed
which loop to use cannot be determined on theoretical once the spectrum of the modulated signal s (t) is defined.
grounds, and consequently, must be determined from an It is our conjecture that the improvement over an ideal
engineering hardware point of view, i.e., the relative ease bandpass filter is negligibly small in the SNR region where
with which the corresponding filters can be constructed, such synchronization techniques are useful in practice.
Both methods of subcamer tracking exhibit the usual In the next section we show that squaring-loops or Costas-
180-deg phase ambiguity inherent in all systems that loops are most useful in data detection systems where the
attempt to recover the subcarrier phase from a modulated ratio of data rate _ to the tracking loop bandwidth wL is
signal, i.e., changing the sign of the received signal leaves large, i.e., high data rate systems.

, the sign of the recovered subearrier unaltered.
)

An obvious question coming to mind is to ask for the Various other approaches to the problem of estimating
presquaring filter which maximizes the signal-to-noise the subcarrier phase when no residual component is
ratio (SNR) at the output of the phase-locked loop. This present at the subcarrier frequency are available, and in
problem has been solved, and the optimum filter, for the some cases have been analyzed. Layland (Bef. 9) and
case where the modulating spectnlm is narrow with re- Proakis (Ref. 4) analyze methods which essentially esti-
spect to the carrier frequency, has been shown (SPS 37-37, mate the modulation itself. This estimate is used in an
Vol. IV, p. 290) to be given by attempt to eliminate the modulation from the subcarrier.

This, therefore, provides an unmodulated sinusoid which
can be tracked by a PLL.s.(p)

H,(,) = (.s, ¥ COO)
4. Performance of Correlation Receivers

where k/s an arbitrary positive constant and S, (p) is the Consider the situat/on where {m (t)} represents the set
power spectrum of modulated signal s (t). For large signal- of signals (xk it), k = I, • • • , N). For the present we

276 JPL SPACEPROGRAMSSUMMARY 37-44, VOL. IV

I

1967019812-286



assume that each signal in the set occurs with equal prob- for all k -- 1, • • • , N and makes its decision in favor of

ability, contains equal energies, exists for a time duration that signal which yields the largest Ch.

of T seconds and is orthogonal, i.e.,

Of particular interest here is the case where the set of

signals {xl, (t)) are code words taken from an orthogonal

rxk(t)x, (t)= (32) code dictionary containing N = 2" code words, i.e., the.
8j_

signals are sequences of -_ and - l's. In this case the time

duration T becomes the product of the number of bits

where 8jk -- 1 for j = k and 8it = 0 for j =/_k. In the pres- per code word times the time duration per bit, i,e.,
T = nTr,. If one assumes that word sync and symbol sync'-'ence of white Gaussian noise the optimum receiver, i.e.,

the one which minimizes the error probability, computes (i.e., the instants in time where one word begins and
another ends and the instants in time where the modula-

tion may change states) are known exactly and that either

J tile squaring-loop method or Costas-loop is used to pro-Ck = y (t)Xk (t)dt (33) vide subearrier sync, the conditional probability that the

data detector will err may be shown to be given by

(Refs. 13 and 14)

PE (4,) = 1 - P,. (4,) = 1 - "(2_)'----_.,ay (2r);u exp - dx (34)

• where R = A"Tb/N,,. The average word error probability is obtained from Eq. (34) by averaging over the distribution

of p (if), i.e.,

f 7r/',
I P,.= p e. (35)

!
" Thus, from Eqs. (18), (34) and (35) we have 3

PE=I-f=/"exp(Dc°s2ck'dcbf_ exp(-y''/2)dy r fi "'exp(-x"/2'dx]"''-' (36,j_./,  40(D) L -

7

where

r" 7 if an RC filter centered around _,, precedes the squaring-

II_ D=-_R] 1 |+-1 (37) loop. The parameters R, 8, y and S_ are defined by

A"Tb _ wL 1

if an ideal banOpass filter precedes the squaring-loop or R = N"-'7 ; cr= toL Y "-- "_i ; c_ --- Tb

, (39)

,,___aR[- (38)
,_ D = 8 11 We point out that the parameter _:)_is the data rate of the+ --IL 8yRJ system.

_'his assumption is not too restrictive since jitter on the phase of the subcarrler is more deleterious on system performance than jitter about
those instants in time with which the modulation may change states. This, of course, is a consequence of cGherentdetection.

E 'In some cases the bit-errorprobability is of interest. The ratio of the bit-errorprobability to the word error probability is 2"'V2" - 1
. (Rd. 14).
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Fig. 3. Word error probability P_ vs R (n = 5l Fig. 4. Word error probability P_ vs R (n = 6)

, Eq. (36) has been integrated numerically using an are used. The performance of a block-coded system which
IBM 704 computer for n = 5--8. The results of the numer- uses biorthogonal codes is given by
ical integration are illustrated in Figs. 3-8 for the situation

where an ideal bandpass filter precedes the PLL. The f'_/__ . . exp [D cos24,]
parameter y was set at 1/2000, since this is typical of Pe = 1-. Vc(_b) _ cl_ (40)d - _'12

what might be encountered in practice. It is clear from
these figures that obtaining subcarrier sync by the where
method outlined here is most beneficial in systems where

f-8 = 2_/wL > > 1, i.e., high data rate systems, p_(_,)= exp(- y=/2)

One may proceed to develop the performanceof such F[l"'='"_c°"exp(-x=/2) ]"-'-'a system for biorthogonal codes. However, if one recalls × t.J-u,_=,=_ _ co,_ (2_r)Vi dx d_
that for n _" 5, the performanceof systems which utilize (41)
orthogonal code diddonaries is approximately equal to
systems which employ biorthogonal code dictionaries; For n_5, numerical integration of Eq. (38) on the
then the remits presented in Figs. 3--6 may be used in IBM 7000 produces results, for all practical purposes,

[ carryingout a particulardesign where biorthogonalcodes equivalentto those shownin Figs. 3-8.
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Fig. 5. Word error probability PEvs R(n = 7) Fig. 6. Word error probabilify PEvs R(n --- 8)

Finally, it is of interest to understand how the value of 5. Conclusion
g = B_/w_ affects the performance of a particular design.
This trend is best illustrated, for various values of g, in A model probabil/ty distribution for the phase-error

Figs. 7-9 for uncoded telemetry systems, and in Figs. 4, exhibited by the squaring-loop or Costas-loop has been

10 and 11 for block-coded telemetry systems. The results derived using the Fokker-Planck equation. The param-

given in Figs. 7-9 were obtained by numerical integra- eters of this distribution are evaluated in terms of the

tion of Eq. (40) with n = 1, while the results given in covariance function of the input noise and, in particular,
Figs. 4, 10 and 11 are, for all practical purposes, valid for for two specific noise spectra. The model distribution is

biorthogonal codes, even though they were computed then used to assess the degradation in performance of a
from Eq. (34). This is due to the fact, mentioned earlier, coded or uncoded telemetry system which tracks the

that for n-_--5 the performance of telemetry systems which phase of the subearrier, using this method. If the phase
employ orthogonal codes is approximately equivalent to of a suppressed carrier signal is derived from the modu-

that of telemetry systems which employ biorthogonal lated data subearrier by means of a Costas-loop or a
codes (Refs. 13 and 14). An obvious conclusion, which squaring.loop, the critical design parameter, which indi-

may be reached here, is that for a _xed 8 and/1 system, cates the usefulness of such tracking loops in the

performance improves as the ratio t = B,/w,. becomes demodulation process, is the ratio of the data-rate to

larger. This result is comprehensible from a physical point the bandwidth of the loop. In the case of coded systems,
of view. this implies high-data rates for error rates less than 10-'.
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_oo ! - -- v , ] - a complex communication network, such as the deep

1 ' ' ' ,---- 8. co _ space network.
I I] 1"/_ f- 5o n.e

_ _7//'/_/__ 1020 #.lifo, In this article we present a method whereby the total

/ S , _ transmitter power may be optimally allocated in a single-

!L_v._x/ _L,<J 2 channel, phase-coherent communication system of theto-J )f /--
,-+-+_ - -_i,7 ' type disct:ssod in Ref. 14. The novelty of th_ method lies
i . _ _.__,_--- I _ i in the fact that it is simple and c."n be carried out with-.... ¿

i \_ \ x \ [ out theaidofa general purpose digital computer. The=::\ \ [ method takes into e,msideration the radio-frequency
_ii ,:: \ ! (RF) carrier phase-jitter due to a noisy RF reference. The

I power is allocated on the basis of minimizing the prGi-
..., _ ability that the data detector will err in making its de-

_. i [ cision. Other resuhs are given which enable one to
__ !! }! I } determine the losses due to noisy demodulauon references

a._ i in one-way and two-way systems. The symbols used in
' _q .... ii t our calculations are defined in Table 1.

II It I

,o-, i :: L ' 2.,.,i,sy,,.=Mdel
' 1 I t In order to shorten the subsequent derivation, we draw

' ' I i [ heavily upon previous results and the notation given in
I

:: : I Refs. 14-16. The basic form of a two-way coherent cam-• t [ i

' _ / i I munieation link is depicted in Fig. 12. Briefly,' the ref-l
1°-4 :: !ii! ,[ erence transmitter phase modulates the RF carrier, say

' : il'l i ! 'Reference14 gives a more detailed descriptionof the overall
I I system.

to"8 t Table 1. Definition of symbols
I0 I00 I000

N Symbo! Dafinltio_n

Fig. 11.Word error probability PI vs RIn = 6, y = 1/SO0) , = I Onewayco=munlcotions
n = 2 Two-way communications

P, Total overage transmitted power

B. Block Coding and Synchronization Study: r.. Timedurationperbit_")_, System data rate

Power Allocation and Noisy Reference ,_. Noisespectraldensity Csingle-slded)

Losses in Phase Coherent Communication _. sy,,omph,_.erra,
F, {s) Carrier tracking loop filter

Syshlms, W. 17.Lindsey w,.. Sandwidth of carriertrackingloop
r, Seccmd-order loop parameter ratio |P)½ K¢_l_'n

1 • Introduction H, Ill Closed loop transfer function of the carrier tracking
loop ossumlng linear Iq.k theory

The problem of power allocation in deep-spa_ telem- a. htio of,yttemd._ _ mc..ier ,mcklaS_.p
etry and command systems is becoming more important benth,,lath

I!. Total signal power.to-gaiN Ipectral density ratio times
in the design and engineering of communication systems, m.dem,i.. Potu,
The reason, of course, is that it is nec-.-vasaryto be able c stoictaw, loin
to predict accurately,prior to launch, the actualbehav/or B g_ioof_trlettracking_ b_schvidtftinthevehicle

|ystem to that in the r_fetence syam
and performance of the system at various times after _.(nl Syt,.m_ W.U,UO_V
l_.aneh. If this can be accompl/_edw/thprecision, engi- #..ln} _.Ime- ,y.,._ .rowp,_uou_ii,y
neering tradcoffs may be recognized,and the cost of the g., _ in_/o,,.-=_,v ,I.,_
misslon may be m/n/m/zecl w/th respect to m/as/on y/el& _', _g in_ {t.,..,,.y ,ink)
This is becoming particularly evident in the operation of e, ram,,_ _ O,_kO_O
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(f) I _/(t) I y ('*) ._J CROSS L.i,.TO DECISIONI
v I CORRELATOR ir DEVICE

I / s ,Nc
I

OEC,S,ON i CROSSI_ I J'(') I

DEVICE _" i CORRELATOR I---1---I V I I I

;co "-'"I
REFERENCE, SYSTEM I VEHICLE SYSTEM

Fig. 12. Two-wmy _.-tmrnunicationlink

c (t), with one of two equally probable, equienergy signals whele 0"_is the PLL estimate of 0, in the present +o" .,.)ise.
.,), k = 1, 2 of time duration T_,t sec. This signal is After neglecting the double frequency components and

conveniently denoted by assuming that the data biphase modulates a square wave
subcarri,'r, it may be shown (Ref. 14) that multiplication
of ¢ (t) with z (t) produces

p(t) = (2P,)'_sin [=t + (cos-_m,)x_,(t)] (1)

where P, is the total radiated power, and mt is the y(t) = [(1- m,)Pt]V=xk,(t)cosc, + n't(t) (4)
modulation factor associated with the reference system.

The channel introduces an arbitrary (but unknown) phase where n_ (t) is white Gaussian noise o_ingle-sided spectral
shift in the transmitted waveform and further disturbs density of N,, w/Hz, _a,d 4,_= 01 - 0_ is the vehicle sub-
p (t) with additive white Gaussian noise nl (t) of single- system phase error. We assume that this phase error is
sided spectral density of N,,t w/Hz. Thus, we observe constant fos at least Tb, see. Also, we point out (Be[. 14)
in the vehicle the following signal: that mt represents the square root of the ratio of the power

remaining in the cartier component to the total power

¢ (t) = (2P,)'_ sin [mr + (cos-1m:) xk, (t) + 0,] + n, (t) radiated, i.e.. m, :: (p,,/p,)v,.

(2)
The decision in the vehicle is made in favor of that

signal which gives rise to the largest cross correlation, i.e.,
The vehicle tracks the carrier component m ¢ (t) by means

the vehicle denmdulator computes
of a narrow band plutse-locked loop (PLL). The output
= (t) of the voltage control oscillator (VCO) of this tracking

filter ._ .ed asa coherentreferencein demodulating ¢ (t). q = y (t) [xl=(t) -- X=s(t)] dt (5)
The vehicle reference waveform z(t) is conveniently
taken to be

am] compares the result with zero. If q > 0, ._,, kl m
z(t) = (2)_co=(mt -I..e',) (3) noumeed,ram:!ff q < O, x,, t= _.
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In the rev_ rse direction, i.e., transmission of the data signals xh. (t). Again n'.,(t) is ,,asilv shown to be white with
back to the reference subsystem, the output of the a single-sided spectral densi b of N.._.w/Hz.
vehicle's VCO is used as a carrier for transmission of one

of two equienergy, equiprobable waveforms xk_(t), k = To recapitulate, we see that the design engineer has

1,2 of time duration T_,.. sec. In this case, the output of at his disposal several communication parameters. For
the vehicle is conveniently represented by the following the ut_-link we have the total power radiated P,, the

waveform single-sided noise spectral density N,,, up-link data rate

_I_, = T_t,,, vehicle carrier tracking loop bandwidth w,._,

'1(t) = (2P...)"-'sin [_.t + (cos -_m..)xk: (t) -F _ ] (6) and modulation index m, = (e, ,/'P_)'_. The corresponding
down-link parameters are P.,, N,,.,, -__, = T -_- - b-'_ WLd, and

Here m_, is the modulation factor which represents the m_, = (P,..,/P_,)'"-'.In the subsections that follow, we relate

square root of the ratio of the power in the carrier to the these parameters together and determine that value of
total power radiate-], i.e., m: = (P,._,/P..)"-', (Ref. 14). m,, (n = 1.2) which minimizes the probability of error

Pt: (n) (n = 1, 2_, say P,:,, (n), for a fixed data rate-to-carrier

It is clear that using the vehicle VCO output as a carrier tracking loop bandwidth ratio, say -_,/wL, (n = 1, 2). Also
the losses, in signal-to-noise ratios (SNR), due to noisyreference introduces into the down-link an additiona _
demodulation references are determined.

component of noist_; however, incorporating this measure-
ment into the system allows one to perform, with extreme

acct:racy, a two-way doppler measurement. Thus, we
3. System Phase-Error Distributionpostulate a mathematical model of the system so as to

include this up-l;nk jitter component, hence, the two-way The probability distribution for the subsystem phase

doppler measurement. However, as we shall see, adjust- error is of great importance in specifying the performance
ment of certain parameters will immediately alleviate this of the two-way link. In fact, the distribution of this phase-

up-link .qF jitter. The down-link channel (assumed to be error has been previously characterized (Ret. 14), and

statistically independent from the up-link channel) fur- its probability density function is conveniently repre-
ther perturbs rI (t) by inserting an unknown phase shift 0., sented by
and additive white Gaussian noise n_,(t) of single-sided
spectral density of N,,._,w/Hz. Thus, the reference receiver

I,, (I a, + ,x_oexp I< _ (10)
observes e ('k-,) = 2_rlo(al) Io (a:) '

(t) = (2P2)',_sin [,_.4 + (cos -_ m2) xk_(t) + Ot'l+ 0_o]
where I,, (x) is the imaginary Bessel of zero order and

+ n_ (t) (7) argument x, and a, and 0_,are related to the up- and down-
link parameters. The validity of using this distribution as

The ground receiver tracks the carrier component in a model for the phase-error distribution has been given in

$ (t) for the purpose of measuring the doppler and demod- Refs. 14 and 15.
ulating the data. We denote the output of the reference

VCO by In passing we point out that the loop filter, which is of

greatest interest in practice, is of the proportional-plus-
v (t) = (2)½ cos (,u2t+ _z) (8) integral control type/' i.e.,

where _._is the estimate of phase of the observed carrier 1 + r2,s

component. Multiplying _ (t) by v (t) and neglecting the F, (s) = 1 + r_s; n = 1,2 (I1)
double-frequency components, one may show (Ref. 14)
that

If one relates the basic parameter of the carrier tracking

y (t) = ((1 - m2.)P_)_ xk2 (t) cos *k2+ n_ (t) (9) loops, i.e., the loop bandwidth w,.,, n = 1, 2, to the time

'The subscr/pt n = I refers to parameters, filters,etc. In the vehicle
where _2 = 02 + _, - _2 is the reference system phase system or one-way operation; wh/le n = g refers to parameters,
error and is assumed constant for the duration Tb_ of the filters, etc. In the reference system.
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constants in F,, (s), we have and G is tile static phase, gain of the spacecraft receiver,

which is deterndned by tilt' ratio of the input frequency

r,, + 1 (P,,)"-'K,,r-'_,,, to the output frequency _t the spacecraft. In practice,
wt.,, = ,.'_BL,,..... 2T..,,, ' r,, re,, (12) the values of/3 and G ;_.:'echosen such that K (r,, r,,_/3) is

approximately unity; hence, a, is approximately the SNL

existing in the carrier tracking loop bandwidth.
where K,, is the equivalent _imple-loop gain which de-

pends upon the VCO constant and the multiplier constant,
Ref. 16, p. 30. The loop handwidth B_.,, is defined as 4. Losses Due to Noisy Demodulation References

in One-Way and Two-Way Systems

1 f J _ [H, (s) [:'ds : n = 1, 2 Before proeeeding with the problem of power alloca-we, = 2BL, =_ J_ tion, we determine the RF losses due to a noisy carrier
(13) reference in one-way and two-way telemetry links. For

two-way links, the significant contributing facturs in this
where loss are the noise in the ground receiver's demodulation

jr,, + 1_ reference _x and the phase modulation existing on the

1 -_ _ 4-_--_L_] s vehicles carrier produced by the up-link additive noise.
)

H,(s)- [r,, �1\1 (r,, + 1_-' n 1,2 a. Losses in one-way links. One-,ray telemetry recep-

1 + _] s + _-\_1 ."-' tion, i.e., reception when the vehicle is operating with an

(14) auxiliary oscillator as a frequency reference, has been pre-
sented and discussed in Refs. 17 and 18. For the sake of

• and H, (s), n = 1, 2 is the closed loop transfer fimction of completeness, we include a graph (Fig. 13) which enables

the carrier tracking loops in linearized form• The transfer the design engineer to evahmte such losses when the ref-
function of the ground receiver's carrier tracking loop is erence phase-error is constant over a bit period. These

given by Eq. (14) with n = 2, and that of the spacecraft's results are obtained by numerically integrating the expres-

carrier tracking loop is given by Eq. (14) with n = 1. sion, which specifies the bit-error probability P+:(1) as a

: function of the SNR in the data, say R,_, and the SNR in
The parameters trx and a._,,which serve to characterize the reference system's carrier tracking loop. This bit-error

p (ft._,),me given by probability has been shown, Ref. 14, to be given by

2m_P_ 1 _ 2m'-'_,P.,_ m.'-,82R, f_a _= No_wL_" K (r_, r.,_,/3) a., N,,2wL2 e+:(1) = lim p (_) Erfc [(2Rd_)_,_cos 4"-,]d4,.. (18)

(15) WL.__ 0

_' where
_: where

) /._.., 1 2P..,Tb..

8.,- - R,- (16) 1 [':
WL2 Tb2WL'., " N,,2 Erfc (x) = (2_)'_ jr exp (- y2/2) dy (19)

defined by

rdiG 2 Eq. (18) has been plotted in Fig. 14 for various val-

K(r,,rz,/3) =(r,+ 1)r., ues of the parameters Rd_ = (1 -- m_)R, and a. Here
a = 2P_,/No,wL_ = 2m_P_/N°_wz, denotes the SNR in the

r2 + r,r_[3(1 + [3)+ [32(1 _+[3) _+.._.raft3 q carrier tracking loop, and Ra, is the SNR in the data: X 'r2/rl + rz[3 + fl 2 (r2 q- rl -- 9.) + rl/33 q- r,[3*/r=j channel. The above results indicate the importance of

(17) establishing the proper SNR in the carrier tracking loop.
If this is not done, a significant loss over the theoretical

with performance is quite pronounced.

Bt,_ (r_ + 1) b, Losses in two-way links. For two-way systems, the

= Bta (r_ + 1) probability that the data detector will err in its decisionJ_
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Fie. 13. Error probability vs the SNRRat for various Fig.14. Errorprobability vs the SNRRa=for various
values of the parametera valuesof the parameter al with a2 = 10

may be evaluated following the procedure given in the losses due to noisy carrier references are clearly mani-
-' Ref. 14. In fact, it is easy to show that the average bit fested. These figures also indicate that the selection of

error probability is given by, Ref. 14, the modulation factors ml and m., must take these into

consideration. This selection is the subject of the next
subsection.

P_(2) =/_ p(_,)Erfc [((1 -

/-lr

m._) R2)1/2cos p.,]dss=

_, (20) 5. PowerAllocationand SystemPerformance

,_ In this subsection we treat the problem of dividing the
This equation has been plotted in Figs. 15-17 for various power between the carrier component and the sidebands
values of the parameters al and az, where (1 - m_) R., = so as to minimize the probability of error. Simple formulas
R_,, is the SNR existing in the data channel. These figures will be developed which allow the design engineer to
show the effect of varying at (which, in practice, is ap- compute the modulation factors m,, n = 1, 9. without the
proximately equal to the SNR existing in the vehicle's aid of a digital computer. Finally, design curves will be

i carrier tracking loop) when the SNR in the ground given which allow one to make engineering tradeoffs and
_: receiver's carrier tracking loop o., is held constant. Thus, carry out the particular design.
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Fig. 15. Errorprobability vstheSNRRe=for various Fig. 16. Errorprobability vstheSNRRd=for various
values of the parameter al with a= = 20 values of the parameter al with a= = 100

a. Allocation of power in two.wag systems. From characteristic exhibits a bottoming behavior, i.e., the sys-
Eq. (20) it is apparent that any attempt to find the value tern exhibits an irreducible error probability. This be-
of m2, which minimizes Pe (2)by the method of differen- havior is due to the presence of additive noise on the
tiation, immediately presents formidable difficulties; how- up-link and may be eliminated by using a clean carrier
ever, the surface generated by Eq. (20) has been studied reference in the vehicle or by increasing the up-link SNR
on the IBM 7090 computer. The procedure used by the to a point where the phase-jitter in the vehicle's carrier
machine was to search for that value of m.. which mini- tracking loop becomes negligible.
mizes Ps (2) and then evaluate Pe (2). The results of these
computations are illustrated in Fig. 17. This figure is a plot The irreducible error probability, say P_, (2), may be
of the optimum value of m:-:,say m_,, versus R., for various obtained from Eq. (20) by letting No=approach zero, i.e.,
values of 8_ with aa = 9 db. This value of al corresponds ,., approaches infinity, and R., approaches infinity. Taking
to a near threshold condition in the spacecraft's carrier the limit, we tlnd that the integration is zero in the interval
tracking loop. Fig. 18 represents a plot of the system error where cos @=---_0 and becomes
probability versus R=, for various values of 8=, when the

[" exp(=,cos,,)d Œ3power is optimally divided between the carrier and side- Pet, (2) = J,/= _ (21)
bands. Notice from this figure that the Pz (2) versus R,
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where cos @_< 0. This function has been studied in
SPS 37-37, Vol. IV, p. 2S7.

tO"5 _L__
In practice, it is convenient to have an approximate I Io lOG lOGO

2P2rb2
formula which specifies the optimum, say m_%,value of Rz =
the modulation factor as a function of the various system No2

parameters. This approximate formula is easily obtained Fig. 18. Minimumerrorprobability vsR=for various
by assuming that the SNR existing in the individual values 8=wltha_ = 9db
carrier tracking loops is !arge enough that the linear PLL

theory applies. In this case the probability density p (@): a;_+ a;,_ and the system error probability of Eq. (20)
' of the phase-error becomes Gaussian with variance _r_._,= reduces to

00

v.(9.):(_._-,=_f=exp[ _=] _.ac[((,- ,.=,)U.,.cos_4a_, (z_)

Differentiating Eq. (22) with respect to m., and equating the result to zero yields

E Eexp { R,(1 - m._)
( Y

+ m_8=R=)" )}

m,,,R,(1.- m_)½ . (.( y )• (=;_+ m.=.,8=R._)_y sm a;t + m_8=R=)','J'

)]--_"_'7/ C'OSI, 1
i -- m._/ M"; + m]8.R.,)W = 0 ((2,,3)
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where E (') denotes the mathematical expectation of the quantity in the parenthesis, and y is a random variable which
is normal (0, 1). Carrying out this expectation and solving for the value of m_ which produces the minimum, gives

8.(K.- 1)- .,,(1 + 28_)
m'. -_

28_R_(1 + G)

+ {[_.,(R.,- 1)- -i'(1 + 28_)]'-'+4G(1+ 8:)[8.,R..+ a,'(R.,- a,')]}"-'
28_a.,(1+ 8_) (24)

This approximate formula, of course, is good in tile region where the linear PLL theory applies.

b. Pourer allocation in one-way systems. The mathe- J.oo I
matical model, wLich we have established for two-way t
systems, reduces to the mathematical model for one-way

systems if one allows BL_.to approach zero and replaces "'_'_"'_ _
all subscripts on parameters which possess a two by one. _.....___ 8, :l
In this case, the expression for the average error prob-

ability becomes N."_ _ _

P_-(1) = p (q,,) Erfc [((1 - m_)R,)'/_eoscb_] de_ -"___. Io7r

(25) ,_oo.,o " _"

where p (_bz)is given by "'x _ 30

and

0.01

8, ,;._.....L_= 1 2P_Tb, (27) ' z 4 s ao zo ;iO
, = WL1 Tblw_----_t; Rt = N,,, a'l¢ .

As before, the value of mf which minimizes PF.(1) in Fig. 19. Optimt;mmodulation fattorm_0vs lit forvarious values of the parameter 8z
Eq. (25) has been found by use of the IBM 7090 com-
puter. This value, say m_,,, is plotted in Fig. 19 versus R,
for various values of 8_.The error probability correspond- scripts two by ones. Thus, from Eq. (24) we have with
ing to this minimum, say PF.,,(1), is illustrated in Fig. 20 at = 0o,
versus R_ for various values of 8_.

(Rt - 1) + ((R, - 1)2 + 4Rt (1 + 8,))v,m_,,= (28)
Again an approximate formula which specifies the opti- 2R_ (1 + 8_)

mum m_,, as a function of the various system parameters
is of interest to the design engineer. This approximate This approximate formula is plotted in Fig. 21 versus Rt

formula may be obtained from Eq. (24) by letting at for various values of 8t and may be used to compare with
approach infinity and replacing all parameters with sub- the exact results given in Fig. 16.
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C. Combinatorial Communications: On The F,, [x]. The elements in F,, [x] arc regarded as polynomials

Number Of Information Bits In Certain modulo x .... l.

Cyclic Codes, R. McEliece Let us view F,, [x] merely as a vector space of dimension

1. Introduction n over F. Then the elements A (x), x" A (x), • • • , x "-_A (x)
generate a subspace .cj). Furthermore, the dimension of ,G)

Any binary, group code can be described by its genera- is precisely the rank of the matrix A. But .c/t is a(.tually an

tor matrix whose rows may be thought of as a basis for ideal in the ring F,, [x]. This is because the given basis for

the vector space which constitutes the code. It is always .c_t is only permuted when multiplied by the element x,
important to know the number of information bits in such and x generates the whole ring F, [x]. Hence c/.) is the

a code. However, if the code is defined only by its gen- principal ideal (A (x)). We now need the following:
erator matrix, determining the numl)cr of bits is difficult,
because it is equivalent to finding the rank of the genera-

tor matrix. However, when the code is cyclic, it frequently Lemma 1: If PtF,, [x], then (P) = (gcd (P, x" -- 1)).

happens that the generator matrix is what is called a
circulant, a.,d in this case it is possible to greatly simplify Proof: We return temporarily to F [x], where the ideal

the task of finding the number of information bits. In sub- shucture is clearer. Two polynomials P and Q generate

section 2 an algebraic method for calculating the rank of principal ideals (P) and (Q), and (P)_ (Q) if and only if
a circulant will be developed, and in subsection 3 an appli- P divides Q. We suppose tha _ Q is the kernel of a ring

cation to the so-called quadratic residue codes will be home_._orphism 0: F [x] --* F [x]/(Q). Then the usual sort

given, of calculation shows that 0 (e)= P uQ/Q. But in F [x],
P uQ is principal and is generated by gcd (P,Q). Our
lemma is the case Q = x" - 1.

' 2. Algebraic Theory

Definition: An n × n matrix with entries in a field F Lemma 1 allows us to complete the proof of Theo: a 1,
which has the form for it shows that (A (x)) = (ged (A (x),x" - 1)). Suppose

gcd (A (x), x" - 1) = B (x). Then B (x) divides x" - 1. It is

_ clear that the codimension of (B) in F, (x) is the degree

-a_ a.., a3 "'' a, d of B, since 1, x, • • • ,x '_-' are linearly independent
a, a_ a2 • • • a___ (mod B), but there can be no larger set. Thus, the dimen-

sion of (t]) is n - d, as _sserted. Theorem 1 is proved.
an-x a,, a_ ' • • an-2

A=

3. An Application

If p is a prime, the quadratic residue codes we shall be

a, a_ a, • • • a_ _ interested in can be described by their generator matrices
Qp, which are circulants over G F [2]. These matrices

is called a circulant matrix, are, therefore, completely described by their first rows ;
(a,,,a_,'..,ap__). Using the familiar Legendre symbol

For our applications, it will be necessary to compute (a/p), we describe the first row: i
)

the rank of a circulant matrix. The following theorem
is useful: ao = 0 i

Theorem I: Let F [x] be the ring of polynomials wilh / /k\ i
A (x) = a_ + a..,x + a:,x" + • • " + a,x"-'. Let r (x) = a_ = tO
god(x"- 1,A(x))inF[x]. Then the rank of A is equal to if (k'_ = -1 I
n-degree (r (x)), where A is the circulant whose first row is \P/ I
(a,,a.,, • • • ,a.). 1

The code _s a cyclic linear code with block length p,

Proo_ In F [x] let I be the principal ideal generated by and the numlmr of information symbols is the. rank of the i
the polynomial x" - 1, and denote by F, [x] the quotient matrix Qp. Since the assignment a, = 0 was arbitrary, we i

ring F [x]/l. Since F [x] is a principal ideal domain, so is shall be inter(:sted in not only the rank of Q, but also Q', !
l
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which is also a circulant but has a,,--- 1. We now define y (mod x' 4 1). We may replace the modulus x_'+ 1 by
the polynomials P (x) in both cases, and obtain:

p-I

Q (x) = Q,,(x) = y_ ahx_ (O (x), P (x)) ---(p (x), f (x) + N (x) + 1)

-- (Q(x),N(x)+ 1)
In view of the lemma of subsection 2, we shall be interested = (Q (x), Q" (x) + 1)
in finding the degree of the polynomials (Q (x), x_'4 1) and = constant
(Q (x) + 1, x" + 1) for various odd primes p.

(Q(x)+ 1,e (x))= (f (x)+ 1,p (x)+ N (x)+ 1)
Lete(x)=x _-l+x"--"+ • • • +x+l. ThenxP+l= = (Q (x) + l, N (x)) "

(x + 1)P (x) over GF (2). It is easy to determine whether
or not x + 1 i.;a factor of Qt, (x) ; if the number of nonzero = (Q (x) + 1, Q: (x)) z

coefficients is even, it is; if the number is odd, it is not. --constant
It is, therefore, sufficient to compute the degree of (Q (x),
e(x)) and (Q(x)+ 1, e(x)). As a final preliminary, set

Here in both cases the degree is zero, and so the rankN(x) = P (x) + Q (x) + 1; i.e., N (x) indicates the non-
of the matrix Q is either p or p- 1, depending upon

residues of p. whether p _ + 1 or - 1 (mod 4). (The rank of Q' is p - 1
or p.)

Lemma 2: Let a be a residue (rood p). Then (rood xP+ 1)

' Case II: (2/p) = + 1; i.e., p _ -+-1 (mod 8). By Lemma 2,

l_(x) if : +1 Q='(x)=__Q(x)(modxl'+ 1). Consequently, if F is a split-

(P) ting field for x" + 1, we see that Q(8)- 0or 1 for all 8eF.

Q (x")= /a\ Thus, each root of e (x) is either a root of Q (x) or of

if _,p) = -1 Q(x) + 1. Therefore,

IN(x) if(p)=+X P(x)=(P(x),Q(x,)(P(x),Q(x)+l) (modx'+l)

N(_):[Q(x) if(p):_ 1 :(P(x),Q(x))(P(x),N(x)) (modx'+l)

Now let e be any nonresidue of p, and suppose that 8 is
Proof: The polynomial a pth root of 1 in F with Q (8) = 0. Then by Lemma 2,

N (8') = Q (8) = 0. Similarly, S (8) = 0 implies Q (8') = 0.
Thus, there are as many pth roots of 1 with Q (8) = 0 as

Q (x*)(mod xP + 1) = _ xkalna°dp} there are with Q (8) = 1. Hence
(k/p)= +!

But as k runs through the quadratic residues, ka either degree (P (x), Q (x)) = degree (P (x), Q (x) + 1) = p -...__12
runs through the quadratic residues or through the non-
residues, according to whether (a/p)= + 1 or -1. The

l

proof for N (x) is the same. So in this case the rank of the matrix Q is either (p + 1)/2 i
or (p-1)/2, according as pml (mod 4) or pro-1 t

We are now in a position to compute the degrees of (mod 4). The rank of Q' is either (p - 1)/2 or (p + 1)/2 t
(Q (x), P (x)) and (Q (x) + 1, P (x)), but we must first dis- in this case.
tinguish between two cases.

In both of these eases, the codes corresponding to the
CaN 1: (2/p) = - 1; i.e., p i ±3 (rood 8). By Lemma 2, higher dimensions (p and (p + 1)/2) may be obtained from

N" (x) = N (x") _ffiQ (x) (rood x, + 1), and Q_ (x) -,_ N (x) those of lower dimension (p - 1 and (p - 1)/2) by the
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addition of the all-ones vector to the code word. W(, state and
these results in a theorem:

U: [(x)-_ x"f(1/x)

Theorem 2: Let p be an odd prime. We define a quad-

ratic residue code of length p in terms of its gen- have the property that both irred,wil)ility and degree are
erator matrix Q, which is a circulant with first row preserved. Also, tile relationship of the roots before and

(a,,,al, - • • ,a I, I), where after is ch,ar. (T: ,,_,, _ 1 and U: a_, '.) However, T
and (t together generate a group of only six transforma-

1 ifp_ - l(mod4) tions, which thus severely limit the number of new poly-a,, = nomials obtainable from a given one in this way.
t0 ifp_---+l(mod4)

In Ref. 19, March introduces the "cubic transformation"

Ii if(k) = +1

a_ = k = 1,2, ' • . ,p - 1 M: [(x) -,[(x'/'_)f(o,x_/")f(,,'-'xV:_) --:-[*(x)

if k 1 where ,,,_=: 1. It is easily seen that the roots of [*(x) are

the cubes of the r,')ots of [ (x). In particular, for odd degree

Then the number of inform,-tion lilts in the code is p - 1 n, 2" -- I is not divisible by 3, and the transformatk, n M

if p _ ±3 (mod 8) and (p- 1)/2 if p-=-_-1 (mod 8). We preserw,s not only irreducibility but also the degree of

may increase the number of bits by 1 in each case by primitivity of the roots. In a variety of cases, iteration
adjoining the all --l's vector to the code. of M enables one to generate all irreducible poly-

nomials of degree n from a giw, n one. (These degrees
• include n -_ 3, 5, 7, 13, 17, and 19.)

4. Conclusion

In subsection III we applied Theorem 1 to the quadratic The purpose of this note is to describe a "rational"

residue codes. It should be emphasized, however, that algorithm for affecting the transformation M, which is
useful in preparing tables: (Ref. 20). The procedure iswhile it may not often happen that we will be able to

calculate code dimensions in a theoretical way, Theorem 1 rational in the sense that ,,, and o,-' do not appear in the

is still of use. For Theorem 1 reduces the difficult general final result [' (x) nor in the intermediate computations.
problem of calculating the dimension of a cyclic code to

the computationally simpler problem of determining the 2. The Algorithm
greatest common divisor of two polynomials. This is, of

Divide the exponents of the terms in [(x) into threecourse, easily done by means of Euclid's algorithm, which
classes: A, B, and C, according to the residue class of theis very efficient and is very easy to program on a digital
exponent modulo 3. We produce the set of exponents for

computer. ]*(x) from those for [ (x) by the following 3 steps:

(1) Copy the exponents of f(x).
D. Combinatorial Communications: A Rational

Algorithm for Marsh's Cubic (2) Adjoin all numbers (2u, + u_)/3 where u, and u: i
arc distinct exponents of f (x) in the same residue

Transformation, S. W. Golomb6 class .,odulo 3.
1. Introduction

(3) Adjoin all numbers (a + b + c)/3 where a, A, b, B, i
Given an irreducible polynomial f (x) of degree n over and c e C.

GF (2), it is frequently desired to generate others of the

same type. The two transformations Any exponent for /*(x) which is produced an even

number of times by these operations must be discarded;
T: f (x) _ f (x + 1) ff produced an odd number of times, it should be retained

'Prepared under contract 951076 with the University of Southern 'S. W. Golomb, L. It. Welch, and A. W. Hale's memorandumOn the
Odlfomla, Department of Electrical Engineering, Los Angeles, Fac#orlzatlonof Trlnomlab Over GF(2), Jet Propulsionl..abomtory,
C,alffomia. Pasadena, California.
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(once). If any of the. three categories A, B. C is empty, then step (3) is vae,,,us. If a cate[_ory has less than two members,
it does not contribute to step (2).

Example I, Let [(x) ==x' ! x" Then the categories are

0 2,5

To produce [*(x), we follow the' three steps:

A B C

step 1 0 c2,5 cooy
........ 2,>(24 5 2Y54 2

step 2 3 4
3 ' 3

step 3
V-'ICI lOllS

mod 2 sum 0, 3 4 2, 5

Thus f* (x) has the exImnents 0, 2, 3, 4, 5 and

/*(x): x:-+ x'+x _-_ r-' + 1.

Examp_ 2. We iterate the transformation, this time sta;ting with / (x_ -_ x: + x' 4 x _+ x_ + 1. To form/*" (x), we fol-
, low the three step,_:

A B C
copy

step 1 0,3 4 2,5 2"0 + 3 2.3 + 0 2"2 + 5 2.5 + 2

step 2 3 104 2 3 ' 3 ' 3 ' 3

step3 3,3 4 2 0+4+2 0+4+5 3+4+2 3+4+5
3 ' 3 ' 3 ' 3

mod 2 sum 0 1, 4 2, 5

Thus, f*=(x) = x: -r x' -_ x: + x + 1.

The reader is invited to verify f"**(x) = x" + x' + 1,

3. Proof of Algorithm

We wishtoshow that/*(y")= f(y)/(,,y)f(,,=y)canbeobtainedinthemannerjustdescribed,wherey = x'/:'.Write
f (y) =/,, (g) + f, (g) + f. (y), where ]_(y) containspreciselythosetermsof f (y) with tl_eexponentcongruentto t mod-
ulo3. Then

f (,,,u)= f,,(v)+ -f, (u)+ -'f, (u)
and

f (-'v)= f,,(v)+ -'f, (v)+ ,4,(u)
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Thus, The purpose of this article is to characterize the cir-

cumstances und_*r which two group ele-,ents, gl and gz,

f'(y') ----(/,, _-f, _ /..)(/,, + ,,,[, -_ ,,,=/,.)(_,, + o,'f, -4 ,,,/.,) of the abstract group G satisfy I(g,) := I(g..,) for every
representation S of G. Two group elements with this

-- (/;* -_-f; -_ [_.) -_ (1 + ,,, + o,")(/,,/_ + f,["., + [...[_ property will be called (w_'akly) enumeratively equivalent
(this is clearly all cqmw, ence relation on C), and in z.pply-

1 1 1 ing Eq (1) it suffices to compute I (g) only once for each

-+ [/'[_ + [_[" -_ ["'[") _- 1 0, o,: ¢,,/,_., enumerative equivalence class in G.

1 ,,,-' ,,, We define two grot,p eh'ments, g, and g:, of the abstract

group G to be strongly enumerat;_ve!y equivalent if they
([/, 4 [_ + f_) + [o[,f. have the same se: of fixed points, no matter what repre-

sentatic_ ,)f G is considered. We call two group elements,

sinc,_ 1 + ,,, 4 ,,,-'_ 0, while the determinant is 1. (The el and e:, related (and say g, is a relative of g_.) if the '

matrix is nonsingular by linear independence of the rows, generate the same cyclic subgroup of G, i.e., if each is a

and the determinant is rational by symmetry in _, and 0,".) power of the other. The characterization theorems for
strong weak enumerat_w: equivalence are as follows:

The exponents in [,,,/,, and [:..are those in the classes A, Theorem I. Two elements, g, and g_, of an abstract
B, and C, respectively. The expovents of [_ are: (1) the group G are strongly enumeratively equivalent if and only

triples of the exponents of/,, and (2) the sums 2u_ + u._, if g, is a relative of g_.
where u, and u..,are distinct exponents of [,. The exponents
of [,,[,[.. are: (3) all sums of the form a + b + c, with a _A, Theorem 2. Two elements, g, and g.., of an abstract filxite

• b _ B, and c _ C. Allowing for y:' = x, these are the three group G are weakly ent.merativelv equivalent if and only

steps in the algorithm for fading f" (x) from J (x). if gt is a conjugate of _ relative of g_.

Theoaem 2 is no longer true if the word "finite" is

E. Combinatorial Communications: On omitted. We shall indicate the appropriate modifications

Enumerative Equivalence of Group in this ease. Finally, we shall discuss those grot, ps G in
which "g, a feint,re of g:" implies 'g, a conjugate of g2,"Elements,S. W. Golomb_and A. W. Hales" and vice versa.

I. Introduction

Let G be a finite group (of order ICl) operating on a 2. An Example
finite set S. By a well-known formula of Burnside (Ref. 9.1),

In Fig. 22, the points a, b, c are the vertices of an equi-widely exploited sincf: the appearance of Polya's paper

(Ref. 22), the number C of orbits (equivalence classes of lateral triangle, and the line df is perpendicular to the
elements in S under the oFerations of G) is given by triangle, with e as the midpoint of both the segment df

and the triangle abe. On the set S = {a, b, c, d, e, f), we

have a group of operators G = {A, B, C, D, E, F,_, where

C = _ I (g) (1) A, B, and C are 180-deg rotations of S _round the indi-cated medians of the triangle, D and F are the -+-120.deg
ggO

where I (g) is the numb,:r of fixed points of S under the o'

group element g. It is well known (Ref. 23) that, consider- O_T. b

ing S as a representation of G, I (g) is a group character. C__k ,d

Thus, if g, and g: are conjugate elements of G, ! (g,) =
I (g:) for all representations S.

'Preparedunder JPL contrac_951078 with the Upiverllty d South- #_p. -c
em Califomis, _ 4 Electr/esl Engineering, Los Angeles. /7"Cal_orala. I

F
'Consultant from the University of California. Los Angeles,
California. Fig. 22. The dlifMIdlnslIFr_p
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rotations of S about the perpendicular line dr, and E is the Lemma 3. If t-:,and g_.are nonrelated elements of G, there
identity operator. (Ahstractly, G is the same as the di- exists a representation S in which g, and g., do not have
hedral group of the equilateral triangle and the symmetric the same set of fixed points.
group on three letters.) The fixed points are listed and
counted in Table 2. Proof: Construct S as follows: Let all the cyclic subgroups

of G, and all their left cosets, be the elements of S. Let

G operate on S by left multiplication. (The effect of a
Table2. Fixedpoints group element is to permute a subgroup and its cosets.

"Ience, S is a valid representation of G.)
Group

Fixed points I (g)

ol.mc,, If g, and g_ are nonrelated elements of G, they do not
E a, b, c, d, e, f 6

generate the same cyclic subgroup. Hence, there is a
A o,o 2 cyclic subgroup H containing one (say g_) but not the
s b,• 2 other. As an element of S, H is then a fixed point of g_C c, • 2

but not of g._.
D d, e,f 3

F d,o,_ 3 Theorem 1. Two elements, g, and g_. of an abstract
group G, are strongly enumeratlvely equivalent if and

Formula (1) says that 1/6_.I(g), which is 3, should only if g, is a relative of g.,.

equal the number of orbits. It is clear that the olbits are Proof: The two halves of this theorem are Lemmas 2
{e}, {a,b,c}, _nd {d,f}. Since D and F are related, by and 3, respectively.
Theorem 1 they must have the same fixed points (viz.,
d, e, and D. The operators A, B, and C are not related
and have different sets of fixed points. However, since 4. Weak EnumerativeEquivalence

they are conjugate, by Theorem 2 they all have the We need several lemmas.
same l (g).

Lemma 4, If g, is a conjugate of a power of g._,,then
I (g,) _ I (g=,) for every representation S of G.

By Theorems 1 and 2 respectively, "he strong enumer-
ative equivalence classes in G are {E}, {A}, {B}, {C}, Proof: By Lemma 1 of the previous section, it suttees to
{D, F} and the weak enumerative equivalence classes show that the function I is constant on conjugate classes
are {E}, {A, B, C}, and {D, F}. The example verifies that of G. But th_s is proved in (Ref. 23) Theorem 3.
for this group, the classes are certainly no larger than
allowed by the theorems. Lemma 5. If g_ is not a conjugate of a power of g2, then

there is a representation S of G in which/(gO < l(g_).

3. Strong Enumerative Eq" lalence Proof: Let H be the cyclic subgroup of G generated by g2;
let S consist of H and its left cosets; and let G operate

Lemma 1. If g_ is a power of g_, then every fixed point on S by left multiplication. Then I (g2)_-_1, because g2
of gz is also a fixed point of ._,_. leaves H fixed. On the other hand I (gO = P, because if

g_ had a fixed point in S, say mH, we would have
Proof: Let s,, be any fixed point of g,_,,so that g., (s,,) = s,,,
and let g, = _. Then

g, (mH) = mH

g, (s,,) = _ (so) = g2g2 " • " g2 (So) = s.. (m-_g_m) = H

Lemma 2. If gt and g_ are related elements of the group implying that m-_gzm, a conjugate of g_, is in H, and
G, then they have the same set of fixed points in any hence is a power of g2. This contradiction proves the
representation S of G. lemma.

Proof: gt and g_ are related if and only if each is a power /.,emma O.Two elements, g_ and g._,of an abstract group G
of the other. Then by Lemma 1, if they are related, they are (weakly) enumeratively equivalent if and only ff each
have the same fixed points, is a conjugate of a power of the other.
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Proof: This follows immediately from Lemmas 4 and 5. true. If g_ is a conjugate of g:, then, since the cyclic sub-
group generated by g_. is normal, g_ must be a powerLemma 7. Let ,,,,, and _. be eh*nwnts of finite order in a
of g_.. Similarly, g., is a power of g_, and the proof is

group G. Then tile following are equivalent: complete.
(i) Each of g,, g: is a conjugate of a power of the other.

(2) g_ is a conjugate of a relative of g2. Groups in which every subgroup is normal are called
ttamiltonian gro_,ps, and have been completely classified

Proof: It is clear that assertion (2) implies (1). To show (Ref. 24). The lesult is this: a group is Hamiltonian if

that (1) implies (2), we observe that condition (1) implies and only if it is either abelian, or the direct product of

both that (0 is the order function) 0(g,)_--0(g..) and the quaternion group of order 8 by an abelian group

0(gl)_0(g:). Hence, g, and g_ have the same order, of exponent two by an abelian group in which every
We know that g_ = x ' g'*.x for some x. Here gt and g_. element has finite odd order. This completes the answer
have the same order. Hence, g., and g_. have the same to question A.
order and, t!aerefore, generate the same cyclic subgroup,

i.e., _,.,,"is a relative of g:. ]'his completes the proof. Question B is much more difficult to answer, and will

not be dealt with here. We only point out the following
Theorem 2. Two elements, _, and _.., of an abstract finite facts, without proof: no group of finite odd order satisfies

group G are (weakly) enumeratively equivalent if and the condition of question B; any abelian group of expo-

9nly if g, is a conjugate of a relative of g_.. nent two does satisfy the condition; the quaternion group

Proof: Since every element of a finite group is of finite satisfies the condition; and all symmetric groups satisfy
order, the theorem follows from Lemmas 6 and 7. the condition.

The following example shows that the finiteness hy- F. Information Processing: Arithrnetic Decoding

pothesis in Lemma 7 (and hence in Theorem 2) is nee- of Cyclic Codes, II, G. Solomonessary.
I. Summary

, Example: Let G be th(. split extension of Q × Q (when Q
_' is the rationals under + ) by an infinite cyclic group gen- In SPS 37-42, Vol. IV, pp. 205-208, we introduced sim-

crated by x, with x-' (a, b) x -- (2b, 2a). Then (1, 0) is con- plified mechanizable arithmetic decoding of maximal

jugate to the "power" (0, 2) of (0, 1), and (0, 1) is conjugate length shift register codes and cyclic Reed-Mueller Codes.

to the "power" (2, 0) of (1, 0), but (I, 0) is not a conjugate The number of computations was proportional to the
of a relative of (0, 1). number of information bits. This article extends these

procedures for more general BCH cyclic codes.

5. Considerations of Implication
2. Main Result

In the light of the previous results, it is interesting to

i ask the following two Let k be even. Consider the BCH code generated via
questions:

linear recursion by the polynomial
., _, (A) For which groups G does "g, is a conjugate of g_"
!
,. imply "St is a relative of g="? f (x) = (x + 1)fi (x)f5 (x)

(B) For which groups G does "g, is a relative of g_"

imply "g, is a conjugate of g._"? where [1,[._ are the irreducible polynomials of a and a5

Question A is easy to answer, over GF (2), a primitive. For these codes of length 2_ - 1,
mid us,,al dimension 2k + 1 (only exception: k = 4) we

! Theorem 3. Let G be an abstract group. Then the follow- have a very simple decoding procedure which will cor-
i ing are equivalent: reet [(2 k - 1)/6] - 1 errors:

! (1) g, is a conjugate of g= implies g_ is a relative of g=. Example.

l (2) All subgroups d G are normal. (15, 7) BCH code w'Lll correct 2 errors with this pro-

I Proof: Assume (1). Then if H is a sub ,.pup of G, h is in H; cedure.

i We have g'_ hg is a relative of h and, hence, (63,13) BCH code will correct 10 errors with this pro-
andgisin G.

is also in H. Thus, H is normal. Conversely, suppose (2) is cedure.
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(255, 17) BCH code will correct 42 errors with this pro- majority of these determinations is 0, and as 1, if the ma-
cedure, jority is 1. Note that, since k is even, (2k - 1)/3 is an odd

integer. Hence, a tie can not occur, and the deco,ting
This arithmetic pro_,dure will correct, in general, procedure always produces an answer regardless of how

slightly fewer errors than the usual BCH error correcting many errors were made.
procedures, but is nmch simpler in mechanization and

concept. One readily verifies that if at most (2k - 1)/6 - 1 errors
have been made, the majority decision is indeed correct.

3. Me_hod

Let a : (a,) i --=0,1, • • - ,2 _-2 be the received
vector. G. Information Processing: Decoding Codes

(1) Perform the permutation 4,(a) by mapping x-*x+ 1, Beyond the Bose-Chaudhuri Bound,
x_ GF(2k), as in SPS 37-42. Vol. IV. pp. 9.205--208. E.R. Berlekamp TM

(2) Let Tribe the cyclic shift of Eby (2k - 1)/3 stages It is known from combinatorial arguments that most
to the right. Perform T4, (a), Tz¢,(a). t-error conecting Bose-Chaudhuri-Hocquenghem (BCtl)

(3) Compute the vector sum 4,(a)+ T _ (a)+ T-_¢(a)= b. codes are capable of correcting many error patterns con-
taining more than t errors, although no feasible general

(4) Compute the weight o,of b over all coordinates but algorithms for correcting correctable error patterns are
", the 0th. Let o,' = _,/3. known. In certain cases, decoding words with t + e errors

(5) Add as mod 0 (ordinary arithmetic) to J. can be reduced to the solution of some simultaneous non-
linear equations in e unknowns (e > 0). Unfortunately,

(6) If o,' < (2k - 1)/(3" 2), decode a,, as 0. Otherwise, feasible methods for solving these equations are known
decode a,, as 1. only in a few special cases. The case of t + 1 errors is

(7) Cyclically shift the received vector E one st_.ge to a particular example.
i the right to obtain (a,, a._, • • • , a0).

I (8) Perform (1)-(6) on shifted vector. Decode at. 1. Introduction

(9) Continue until all information bits are decoded. In a t-error correcting binary BCH code of odd block
length N, positions of the code are associated with the
Nth roots of unity, which form a multiplicative subgroup

4. Proof of the nonzero elements of some finite field, GF (2k), of
For the codes described above, the vectors are given characteristic 2.

by {g(a _); i=0,1, '' ",2 k-2} where (SPS 37-42,
Vol. IV) The code is constructed in _uch a way that various

g (x) = co + Tr cx + Tr d x5 power-sum symmetric functions of the error locations are
, available as parity checks on the received word. In por-

a primitive, coe GF(2), ce GF(2k), deGF(2 z) where l}k ticular, the t-error correcting BCH code is chosen so that
and 2t - 1 is the order of a'_. the power-sum symmetric functions S_, $2,S._, • • • , S:t

are avaihble, where

The coordinates 1 + a i, 1 -'1-a [=_-I/3]*t, 1 + a=t_z'-_/s]+*:--

fl_,fli., fli.' say, i = 1, • • • , (2_ -- 1)/3 -- 1 are distinct in Sj = Y. B{
GF (2k) and take on 2_ - 1 values; also, (fit - 1)a = ast, po_°._,.
etc. It can be shown that

The decoding problel., is to lind the S's given these S's.

+ g(#,') + g(#,')
In order to solve these equations, one usually proceeds= co + Trc(1) + Trd(1) = go, if correct

in two stt ps. The first goal is to construct the enmr

' We then have [(2 _ - 1)/3] - 1 determinations of ao in "Consultantfrom the ElectricalEngineeringDepartment,uni.
addition to the value of an itself. Decode a_ as 0 if the versifyo| California,Berkeley,California.
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polynomial By further arguments, it was shown by Berlekamp (Ref, 25)
that if p (x) is any polynomial whatever _a _"'(x), and if

,r (x) = Y.aix' = I-I (1 -- Bjx) either deg p < deg a_'' or if deg a'"' _- deg p _., then

S • p :¢: Even mod x _"
The degree of the error polynomial is equal to the num-

ber of error, and the roots of the error polynomial are Consequently, if there are no more than t errors, thisthe locations of these errors. The coefficients of the
iterative procedure terminates with the correct error

error polynomial (the m) are in fact the elementary polynomial, _,"' =a,
symmetric functions of the error locations. These ele-

mentary symmetric functions are related to the power- We can express the (n + 1)st, (n + 2)nd, • • • (n + k) th
sum symmetric functions by Newton's Identities. As was
shown in a previous article (Ref. o_.5),Newton's Identities approximations in terms of the nth approximation by theformulas
in a field of characteristic two are conveniently expressed
in generating function notation by the equation

A

S (x) a (x) = Even (x) r '"_' = _'_,")a'"' + _,k,.,.,.,

where S (x) is the generating function of the S's, given ^ ...
by S (x) = 1 + 8_x + S,_x"+ S:,x:_,• . " • a (x) is the error Here f(_,"_ and f_" "_ represent the even and odd parts of
polynomial; and Even (x) denotes some even polynomial the polynomml f_k,.); g _, .), and g (k,.) represent the even
in x. and odd parts of the polynomial g(k,")".From the previous

definition of the iterative algorithm, one can readily verify

2. Finding_ (xl that the polynomials f and g must satisfy

t Typically, one is given only 1 + S_x + S2x2 +, • • , f(o,.) = g(O,.) = 1
+ S2,x2t(i.e., S(x)modxZt+_), and one wishes to find a

J, o (x) such that S. _,= Even rood x 2t. This is most readily f(_+,,., = f(_..) _ a_.+_) × g(k,.)
done by an iterative process. We define a sequence of
successive approximations, _,(0),a.), _(2), . . . , and an

I #(k, n)

auxiliary sequence r_°),r"), r _), • "" , as follows: g(k+,..) : 1_ifA(n+k)A_+'1, =/=0anddeg,,-_"+_)Lde"¢("+_)e,I
2 ( aS (n+k) (n+k) (_+k)"(°) = r(°) = 1 Ixg':.' ffA = 0orffdega >degr

Then let a_'. be the eoe_eient of x_'_ in the power series' -, In the common case where deg a_")= deg r _")= rg we have
: of S. a ('). Now define deg _("*_) = n + deg f_."); deg r _" n + deg g(_'"). If

a_.+_)= _(.)_ a(_,)xr(.) a(" (x_r,then for all k_K, f(_,")= f(x,.). Therefore,
we can consider the polynomial f_","),with the obvious
definition.

(n)
0andifdege --degr

r_"+_)= " The branch in the iterative algorithm depends on the

1x _'( ) if A_" = 0 or if deg_ _ > deg_r_") scalar

One can readily verify that, 'or al, _ /_ _.) F d.'i t.)) ]
J

, L t 0

S "¢(") = Evenmod x'" = S,.+t- S(_2N+I

S-.(') = Odd + x"modx _'+'

deg ¢_) + deg r (") = 2n "Throughoutthisarticle,we let "-_"and "^" denotethe oddandeven p_rtsof a polynomial.Noticethat ",--" is the graphof an
(r(_)(0) = 1 odd sinwave and"'_" isthegraphof an eventriangularwave.
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where we have set Evidently, .X_"_= 0 mod x-'". Finally, since

[-,,,._,,., ] S,"' (x) r("' (x) = x_"modx _"+'
S _"_ -- S.,n @�o(')2it. I . t t

1_ t-l

we define

Evidently, S_.) T(._
A(._ - __

X2n

ot''} = ,r" iff AI,") = 0iffS:,+l = S ("):tn+l

For this reason, we call S_" the anticipated value of 3. Expression for X_'_--2tl+l

S.,,+,. More generally, define th, anticipated values of We now give an expression forAY"' in terms of o<"),r _"_,
further power-sum symmetric functions by the iterative S '"_, A '"_, and f<_,"'. If we are given S_, S,, S:,, • • • , S_,,,
equations then we can compute o'"', _"_, • "', and A '_). The equa-

tions we are about to give will relate the two unknown

S_,"'= 1 polynomials f'=,"' and A_"' = A,x + A...x_ +, • - - ,. De-
tails are omitted•

s_, = (s_,,,)_
The coefficients A, of x' in :(") (x) are given as

7c,,, = deg _ S.k+ o_,"'
_'ek+l - t AI -_- flt-I

For k "_ 2n, S_"' = Sg. Evidently, the polynomial Aa = f_(A2 + f_T_+ o2 + f2) + f3

A-. : It (A, + A2 (t,r, + o, + fz) + f,', + f.,r,

s'"'(_) _ '"' '= s, x +o.+f_.,+t.+(t,.,+_,+f,)"
l=O

+ f._(A, + f,,-,+., + f,) + f.,

is the unique solution of the equations In general, A2k-! is given by an expression of kth degree
in f_, (k - 1)st degree in f2 and f3, (k - 2)nd degree in

_(") (x) = S(") (x2) f, and f._, • " - , and 1st degree in f_k-.-and f,k-_.

S("' (x)a (") (x) = Even (x)
4. DecodingMore than t Errors

For this reason, we view S("' (x) as an estimate of S (x), Let us consider how these expressions can be used to
based only on Sa,S,_, - • • , Sz,. If there are no more than decode more than t errors in a t-error-correcting Bose-
n errors, then this estimate must be correct. However, if Chaudhuri-Hocquenghem code. We first compute ¢"),
there are additional errors, then the estimated power- v"), o'", Tt_, • • • , _,m _.(t). Then we compute the first
sum generating polynomial will differ from the true gen- several coefficients of S (t) and of A it). We are then in a
erating polynomial. Since S (") (x) = S (x) rood x_",we mea- position to apply some of the above formulas with n = t.
sure the difference by the polynomial

We next consider the S_, for k > 2t. For certain values

A(") (x) = (S (x) - S(") (x))/x _" of k, this power-sum symmetric function will be a known
power of one of the given power-sum symmetric func-
tions:

At_ is thus seen to be the first co_fllcient of a polynomial

which represents the difference between the actual power- S_ = S__; t < k
sum generating function and the nth approximation to it.

Breaking A_.)(x) up into even and odd parts gives whenever

a_" = Z(")+ ,_"' _._-_= kroodN
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The values of k which are expressible in this way dep"nd If instead, .x_ ' S0 for some value or values of k, then

critically on the specific parameters of tile code, tile block there must be more than t errors, and o Ct' is definitely

length N and the error-correction capability t. For the not the error polynomial. For large values of t, this in

pe.ffect ttamming codes (t = 1 and N one less than a itself is well worth knowing, because it enables the de-
power of two), there are no odd k which are expressible coder to avoid going through a search over the Nth roots

in the above manner. In general, however, several such of unity to attempt to find the roots of _,_t)
k are. For example, for the 5-error-correcting binary BCH

code of block length 63, we have S,, S,, S;, S= and S.,

given. S., S_., and S,._ are unknown, but S,_ = S_", In order to correct the additional errors, one must
S,:, = S',": (which is known); S.., = S.,; S.._ is unknown, solve the _quations for the coefficients of the polynomial [.
and S.,; = S_, (which is unknown), • • • ,etc. If there are only t + 1 errors, then the algebraic equa-

tions contain only ont' unknown, and the situation is
In general, these relationships may be most readily relatively hopeful. If this equation has degree _4, then

determined by examining the binary representations of it can be quickly solved (without any search) by the

these numbers as suggested bv Mann (Ref. 26). Since re"thods_f Berlekamp, Rumsey and Solomon (SPS 37-39,
multiplication of i by 2mod (2_ - 1) is equivalent to a Vol. IV, pp. 219-226). For example, we saw that in the

cyclic shift of the k-digit binary expansion of i, S, is 5-error correcting code of block length 63, the decoder
a power of S_ in GF (2_) if and only if the k-digit binary knows S,, S,, S:., St, S:,, from which h.e can compute

expansions of i and i are equal exc_.pt for a cyclic shift, o¢",r ('', • • - ,o (='_, r (s_, S('_ and A ('_). Knowledge of

S,= = $1';_.enables one to compute A(i_, thereby obtaining

For every known S, J odd, 2t < j < 4t, we also know a quartie equation for f_._. Solution of this quartie en-
a_t_ F ,r each such known Si, we therefore have an ables the decoder to determine f(x), ancl then the errorj-_t"

• algebraic equation relating the unknown coefficients of polynomial o (x), assuming there were no more than 6

the polynomial ft=."'. If dega _t_ = t and there are actu- errors. If one or more of these equations is linear in

ally t + e errors, then deg [¢_. t) - e. Thus, we will have some unknown, then that unknown can be eliminated by
several simultaneous algebraic equations in e unknowns, substitution. For example, if A._ is known, then we can

If we could solve these equations, then we could first find the error polynomial for a pattern of (t + 2) errors

determine the polynomial f__. t) and then the error poly- with the solution of a single algebraic equation for f_.
, nomial. Of course, we do not ge_orally know the value The equation for &_, which is linear in f,, can be used

of e, but the objective is clearly to solve these equations to eliminate fz from the expression for the next known A_,
with a polynomial f of as small degree as possible, which is algebraic in f, and ,_._.

For example, if ,x _t_ = 0 for all k for which it is known,
then the polynomial f (x) = 1 solves all of the equations. In some cases, the equations generated by this method

In this case, of course, the received word lies in a coset appear to be unnecessarily complicated. For example,

_ containing no more than t errors and the error polynomial consider a two-error-correcting BCH code. The error
is given by _,_t_. polynomial can be shown to be given by

t

1 if S_ = 0 and R, = S._+ S_ = 0 (0errors)
1 + S_xifS, =/=0andR3 = Ss + S_ = 0 (1 error)

R' x2ifSl =t&O,R_=/=Oand Tr(R'_), = ] + + E =o (2errors)

i(l + (Sl + ¢)x)(l + t,x + (-_ + S? + S,¢) x2)

," ff/1,_: 0andTr (11-_-._).0 ; rr (-_) = 0 (aerror_)

i JPL SPACE PROGRAMS SUMMARY 37-44, VOL. IV 301

!

i

1967019812-311



5. Three-ErrorCase trivial code consisting only of two codewords, all zeroes
and all ones, this is no surprise.

The zero and one-error cases can be verified immedi-

ately. The polynomial for the two-error case follows In GF(24), there are 7 nox_zero elements with trace
directly from the iterative algorithm. This polynomial zero. Three of these are suitable choices for a,, and three
has two roots in the field if and only if Trace (R,/S_) : 0.
(For proof, see SPS 37-39, Vol. IV, pp. 219-226.) are suitable choices for a_, but only one of them is a suit-able choice for a,,. Thus, in GF (2') we must have a, = 1;

- In order to verify the three-error case, we must check there is no other possibility. Hence, if R._is a cube, then
that the given expression for a (x) satisfies Newton's iden- there are only three possible values of _, namely the three

cube roots of R:,. The error paRern is represented by
titles and that it has three distinct roots in the field. By S, + _i, for i = 1, 2, 3; with ._! = R3. Thus, in GF (2*),
the i_:rative algorithm a polynomial of fourth degree cosets with R,, a perfect cube, have unique coset leaders.
satisfies Newton's identities when R:, :/: 0 if and only if Other cosets of weight three do not.
it is of the form

In all other fields, coset leaders are never unique. In

(R:, ;X_Z)(_) GF(2k isobvious,sineethereare2_-k-lnonzero_(3, (x) = 1 + S,x + _ + x_ + x_ elements with trace 0, and any of them may be chosen
as a,,; a: and a: need not be used at all. In GF(2_k), we
begin by choosing a,, :: 1. Since (2:k-: - 1) nonzero field

The assumed polynomial was elements have trace zero, and only (2 ''_"_- 1)/'3 have
multiplicative order divisible by three, it is clear that

I+(S,+_)x(I+,x+(-_+S_+S,_)x'-') there are at least (22_- 4)/6 elements with trace 0 andmultiplicative order not divisible by three. If one of them
provides a suitable choice for a,, then we may set a_ = aL

These two expressions agree if we set or, .onversely, if one of them is a suitable choice for
a_, we might set a.. = aL This shows that there must be

R_ (__Z* ) an equal number of choices for a_ and a_.,and hence, at<! a_ = _- (S_ + _) + S_ + S,_ least (2"k-_- 1)/'3 choices for each.

Finally, we must show that there are multiple choices
Finally, we must check that the claimed polynomial actu- for the constant a,,. If a is a primitive element of GF (2"k),
ally has three roots in the field. The conditio, for this then it can be shown that a,, = a':_'*'" represents such a
to occur is that choice,, as does a,, : 1. The proof of this fact is omitted.

Thus, there is little value in decoding cosets of weight

(_'_ three in two-error-correcting binary BCH codes, except
Tr\ ._:] = 0 in the case when the block length is 15.

,' 6. Conclusion
- If the minimum weight member of a particular coset

is not unique, then there is little gain ilJ decoding that The method introduced here for correcting more than
eoset, for the a posteriori probability of error will be t errors seems to be advantageous chiefly at moderate-to-
greater than 1/2, no matter how the coset is decoded, low information rates (large t, small difference between
For this reason, it is of interest to inquire whether or S.,t_ and the next known S_, and correspondingly small
not the triple error pattern decoded by the above method degree of the algebraic equations). The method outlined

, is unique. The answer depends upon the field. In GF (2s), by Gorenstein, Peterson, and Zierler (Ref. 27) for the
there are only three nonzero elements with trace 0; each special case t = 2, and implemented along the lines sug-
of them has a unique cube root. Any of the three may be gested in (SPS 37-39, Vol. IV, pp. 219--2,_) has obvious
selected as no, but, for any given syndrome, the resulting advantages when t = 2. At intermediate rates, the method
triple error pattern will be the same, The choice of a,, suggested in (Ref. 25) appears preferable.
will affect only those of the three errors denoted by
(St + _). Since $5 = S_/n GF (9.,), it is evident that this Our method is seen to be very dHcient for correcting
double error correcting BCH code can in fact correct one additional en'_r, particularly when S. `�¤�S. �`�or
throe errors in all cases. Since this code b actually the S2t+ris known, since in these cases the algebra/c czluation
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for f_ has degree 2, 3, or 4, respectively. Unfortunately, We also ask that
this method does not appear to be very feasible for cor-

recting more than one additional error, uqless someone, J,/" J,fdevises a good algorithm for solving simultaneous alge- E (y-' (t) ) =- Y-'(t, _.,,¢,) P_ (d_,) P, (d_) <
1,

braic equations in several unknowns in a finite field. (3)

H. Information Processing:Signal and Noise in The fundamental problem is to determine what is
meant by the "_ignal" and "noise" portions of y (t). WeNonlinear Devices, c. A. Greenhall''
write y (t) = s,, (t) + n,, (t), and propose the following con-
ditions on this decomposition:

This article presents a definition of the signal and noise
portions of the output of a rather general nonlinear de- (i) s,,(t) is to be the sample function of a stationary

vice. We are able to write down the sample functions of process S, (t, _.,) of finite variance on the original

the output signal and noise processes ill a particularly signal sample space _,.

simple way. This leads to a formula for the signal output (ii) n_,(t) = y (t) - s_ (t) is to be uncorrelated with all
of a hard limiter and thence to a convenient integral random variables in the space M of sigr.al random
expression for the output signal amplitude of a hard va_; hles of finite variance, i.e., with all random
bandpass limiter. The input signal can be both ampli- vc._..,o, es [(_,) on f_ such that E([")< _. Thus
tude and phase modulated. This integral expression was

obtained in the special case of phase modulation by
Tausworthe in SPS 37-35, Vol. IV, pp. 307--309. In this E (n_ (t) D = E (n,_(t)) E (f) (4)
article we show the relationship between our method

" and his. for all f in M.

Conditions (i) and (ii) imply that
1. Definition of Output Signal and Noise

' Suppose the input to the device in ._aestion is E [y (t,) y (t:)] = E [s_ it,) se (t2)] + E [n v (t,) n_,(t2)]

, + 9Ein,,)E(s,,) (5)
' x(t) : s(t) + n(t) (-_ < t< _) (1)

and hence the power spectrum of y is, except possibly

where the signal s (t) and noise n (t) are sample functions for a dc term, the sum of the power spectra of s_ and nr

of independent real stationary processes S (t, _,) and This condition is implied in Davenport's paper (Ref. 28)
N (t, _,), respectively. The ¢_ and _, are sample "points" on tbe bandpass limiter, in which he separates the signal

(functions) of independent sample spaces f_, and f_,, and noise contributions to the power spectrum of the

which have probability measares P, and P,. Assume that output.
these processes have finite variance:

To see how far conditions (i) and iii) determine s Uand

c n_, we write Eq. (4) as

E (s_ (t)) = l_ Sz it, _,) P, ida,) < 00

dtl E [(n, - E(n,))/] = 0 (6)

=f_ N _E (n"(t)) (t, _.)P. (dl_.)< _ i_.) for all t in M. Then write _ (t) as
n

y(t)= [8.(t)+Z (,s)l+ [,I.(t)- (..)I
The output g (t) (- o0 •_. t < oo) of the device is to be

a sample function of a pr(_ '.ess Y it, _,, _,) dependent on the Since E (ny) is just a constant, it belongs to M. Therefore,
input process x (t). We require that the device be time s_ (t) + E (n,) is in M by (i), and _, (t) - E (_,) is or-

invariant; in other words, ff the input is x (t - _) then the th_onal to M by Eq. (0). Thus, su (t) + E (n_) is the

output is _ (t - 8). '/'his guarantees that Y is stationary, projection p (t) = P (t, _o) of the random variable y (t)
onto M, the "signal space." An embry(m/e form of this

"National Research Council postdoctoralresident researchas._/ate idea appeared in SPS 37.23, Vol. IV, pp. 1(10-164, /n
sugported b_,NASA. which the signal portion was defined as the projection
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of y (t) onto the subspace generated by just a single ran- then conditions (i) and (ii) yield that
dam variable in M.

s,,(t) = E(y(t)lS)+ c(t)
Ft.rthermore, the random variables

where c (t) is an arbitrary deterministic function of time.
s,,(t) -p (t)+ c Some further condition (like c = constant) is needed to

define s,, well enough.
.,,(t) y(t) - s,,(t) (z)

where c is any constant, satisfy (i) and (ii). Thus the 2. Saecial Classes of Nonlinear Devices
output signal and noise are determ,ned within constants.

We apply the definitions Eq. (9) of output signal and
noise to the following two classes of devices.

The projection p(t) can be written down explicitly.
We know that p (t) is an iutegrable random variable in a. Linear filter. Let
_ satisfying E (p (t) f) = E (y (t) f) for all bounded mea-
surable/on .Q_.This implies that with probability one f_

on _, y(t) = (nx)(t) =/ h(t- r) x(r)dr (-oo < t < _)

(10)f

P (t, _) = E (y (t) lS) (_) = [ Y (t, _,, _n)P, (d_,)
• J¢!

where x = s + n as in Eq. (I) and(8)

f'.6

the conditional expectation of y (t) with respect to the (1 + t2)hz (t)dt < oo (11)

i original signal process S it, _,). It can be verified that P
Q

is stationary.

The condition Eq. ill) on the impulse _'esponse h of the
We now set c = 0 in Eq. (7) and adopt our definitions filter ensures timt with probability one the integral

of output signal and noise Eq. (10) ezists for all t and that E (yZ)< _, given that
E (x_) < oo. We will show that

s_(t) = E(y(t) lS)
s, (t) = (Hs) (t), n, (t) = (Hn) (t) (12)

n,,(t)= u(t)- s. (t) (9)
j where s,, and n,, are defined by Eq. (9). The condition

In summary, the signal portion of the output at time t Eq. (11) and E (s_) < oo ensures that (Hs) (t) is a random
is obtained by fixing the input signal and averaging the variable on f_,with finite variance, so all we have to do is
output at time t over all possible noise inputs belonging verify the projection property
to the noise process N.

E [ins) (t) f] = E[ ff (t) f] (13)
The definition Eq. (9) may also be of use for nonsta-

tionary input signals. If the processes are not stationary, for all random variables f on fl, of finite variance. Thus

EIf f_h('-r)x(r)dT]= f:h(t-r)E[_(e(t) +n(t))]dr

=.f:h(t-r)E[f.(t)]d.=E[,/:h(t-r).(.)d,] (14) t
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which is Eq. (13). With the definition Eq. (9), then, a quency with l)andwidths small compared wi.h o,,,.Also,
linear filtor does not mix tile signal and noise, zssume that the random variables V(t) and 0 (t), t fixed,

are independent, that 0(t) is uniformly distributed in
[0, 2r], and that tile distril)ution of V (t) is independent

This property extends further. Suppose we follow the of t. Then
nonlinear device of subsection I by a filter H. Thus the
combined output is z (t) = (tly) (t) _- (tls,) (t) + (Ha,,) (t).

1?[G-' (s(t))] : E [G" (V (t) sin (,,;,,t+ O(t)))]If we replace s and n in Eq. (14) by s,, and n,, and note
that E (fn,, (t)) =- 0 by definition, we see that

= E [._-_ f"_G"(V(t)sin¢)d_]<o_
s,,,, (t) = tls,, (t), n,,,, (t) --- lln,, (t) (15) (18)

The dec_)mposition Eq. (9) is not affected by passing
through a linear filter. Hence with probability one, we can expand G (V (t) sin 4,)

in a Fourier series:

,:_ b. Zero.memory device. Here we let
C (V (t) sin _,) = _ Ck(V (t)) e 'k* (19)

y (t) -- F (x (t)) (16) " _

in L _(0, 2_r),where the Fourier coefficients c_ are given by
where F, the characteristic of the device, is a real-valued

• function such that

Ck(V) = G (V sin ¢) e-'k¢ dd_ (20)

- The same change of variable as was used in Eq. (18)
will give that+ N (t.&))e, e, (d&)<

According to Eqs. (8) and (9), G(s(t)) = Y. ck(V(t))e 'k_°t'°'''' (21)

f

(t) = l F (s (t) + N (t, &)) P. (d_,) in L': (_,). The convergence in Eq. (21) is uniform in t$_
Jtl

" because the distribution of V (t) is independent of t, by :
assumption. The terms in Eq. (21) are the signal compo- _

= / F (s (t) + n) p (n) dn = G (s (t)) (17) nents in the narrow frequency zones about each ±k_ .,'*.
J (k = 1,2, ''" ). We can find a (nonrealizable) filter H

satisfying Eq. (11) whose complex transfer function is 1
in the kth zone and 0 in all other zones (by making th_

where p is the probability density of n (t). As far as the transfer function smooth enough). If such a filter passes --
signal is concerned, the device acts like another device the kth harmonic unchanged and annihih, ms all the
with characteristic G, which, of course, depends on the others, then by Eq. (15) the signal output of the device
noise distribution p (n) dn. We will call G the s/gnal char- consisting of the zero-memory device followed by H is
acter/a/c of the device.

2 (v(t)) e ] (22)
Now suppose the input signal and noise to this device

F are narrow-band ,out a center frequer.ey w,. Let the
signalhavetheforms(t)=V(t)sin(_,ot+O(t)),V(t):-"O, In the first zone, the phLce modulation 8(0 passes
where V sin Oand V cos Oare narrow-band about zero fre- through unchanged.
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3. P.andpass Limiter G (s) _ (2 _'_ s (2.5)
An example of a zero-'.,emory device is the ideal band- \ r, /

pass limit,,r, where

Consider now tile case of narrow-band signal and noise
inputs. The harmonic expansion Eq. (21) of s,, (t) can be

F (x) = l (x -_ O) written

-- -1 (x < 0) (23)
V (t____2

sv (t) = 5 a b_ (v (t)) sin (k o,,,t + kO (t)), v (t) =
(7

(See Eq. 16.) Henceforth the input noise n(t) will be a I. ,

stationary Gaussian process, with E (n) = 0, E (n 2) = _,'_. (26)
We easilv calculate from Eq. (17) that the signal at the

'/2output of the hard limiter is b_ (_) = - g (v sin _) sin k_od4 (k = 1, 2, • • • )

(27)/s(t)\
S,(l) G(s(t))

=g_'--_-) if k is even then bk =0.

g (x) = e-_"' dz (24) Tausworthe (SPS 37-35, Vol. IV, pp. 307--,309) obtained
the expression Eq. (27) for the signal amplitude in the

kth zone, in the ab._ence of amplitude m_.xtulation. It can

(See Fig. 23.)For large signal-to-noise ratios the signal be put in the form of a hypergeometrie function,
characteristic G is itself like a hard limiter. For small Davenport's original form (Ref. 28). Here is a Bessel

signal-to-noise ratios, G is almost linear, i.e., function form of b_: i ,tegrate Eq. (27) by parts to obtain

bk(v) =_ _} -_-_.]_, e-_:"""eoskq, cos,bdcb

;,
\rr/ k"_j, e-'_' .....,.,,,12 [eos(k -- 1)# + cos(k + 1),/,] d4,

= ,.. ,:. ]\_-/ _:-e L4,,]:" cos 0 dO+.4_]...e_" ....°cos_,---2--edo

o r ,, , (,)]

3
where the h, are modified Bes._,el functions of the first Vol. IV, i_P. 307-300), and the signal and noise are tin-
kind. correlated.

"[lze signa] power in the kth zone is 4. Comparison wJ_%TauJworthe's lreatmont

We -_i!! briefly review Tausworthe's 1965 (SPS 37-,7k';.

][ L _ff/J Fat.(froin theka, .',_neof theoutputd a hardllmltnr.
He assumes a signal

From tr "-we am compute signal.to.noise nttto in this
zone,.._ the teta] power there is 8/(:rk)' (SPS 37-,35, 3(t/= (2)"tsia(,..t "i-e(t)) (29)
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I where we have used Eq. (31) to justify including the

i_ ev(n harmonics. "I'hu_ S (t), t fixed, is just the projection

of the random variable y (t) onto the subspa:e generated
i)y w_ (t),w._.(t),'.'. By the same maneuver as was
used i_l Eq. (13) it can be shown that this subspace is
just the set of random variables [(s(t)) depending only
on s(t) such that E [y (._(t))] < _.,, However, our s_(t)
in Eq, (:/6) also belongs to thi. subspacc and is the

[ _0 t _s projection of y(t) onto the larger subspace of random

-_' / _" variables which depend on the whole signal process.

/ Therefore, S (t) = s_(t); i.e., otir methods give tile s,:we

signal component of the output when V (t) is constant,

I. Data Compression Techniques: Use of Six and

-i Eight Quantiles to Test Hypotheses in Dam-

Fig.23. Signu!characteristicof a hard limiterin Compressed Experiments, I. Eisenberger
Gaussian noise

1. Introduction

Theoretical analyses rebtive to the use of samplewhere 0 (t) is uniformly distrib_.ted. The noise is narr3_
--_ band stationary Gaussian. -fne ou_p_ _f t_ ha _'1_imite_ quantiles for data c_mpressmn of space ._lemetry have

is written been given in three previous J£!. Technical Reports,
Refs. 29-31. The first of these repor'.s, Ref. 2_, deals with
the problem of estl_,mting the pmameters of a normal

y (t) -- Y.. y_(t) distributie_i using up to twenty sample o.,lantiles, r,nd also lk
I.

describes two goodness.of-tit tests, each using four sample [l_
[/k(t) = S_(t) + N_ (t), S_(t) = E (y (t) w_ (t)) Wk (t) quantiles. The second and third reports, Refs. 30 and 31

are concerned with hypothesis testing and the estimation

w_ (t) = (2)'_sin (k _ct + kO (t)) (30) of the correlation coefllcitnt p of a bieariate normal dis-
tribution, using up to four sample quanti;es. A f,rthcomin,_
tech,ical report, Tests of Hypotheses and Estimation of

where yk, S,, Nk are. re.%nec_dvely,the total output, signal, the Correlation Coefficient Using ¢_Ja_tites, III, wdl e_r-
and coise in the kth zone. He then puts E (y (t)w_ (t)) tend most of the results given in Rets. 30 and 31 to six
into the form of Eq. _27). and eight sample quantiles. The puspose of this article

_' is to give the hypotheses and assumptions relating to the
._ 7o see why our methods agree, first w,: remark that tests and the assumptions relating to estimating p. The

derivation and statement of the te.:t statistics and estt.

E(yk(t)w_ (t)_ = 0 (k=/=l;k,l = 1,2, • • • ) mator_ are _:'e, in the report.

(31)
2. Reviewof Quantiles

This can be shownby writing y__.) in the form A (t) sin To definea quantile, considera sampleof n independent
(k_,t + k_ (t)) (SIS 37-35, Vol. IV, pp. 307--300, s._tion 3), values x,, x_, • • • , z. taken fror,_ _ distribution of con-
and observing that the distribution of _ (t) given _ (t) is tinuous type with distribution function G (x) and demdty
symmetric about O(t). The calcuhUons are omitted, ftm,.qion g (x). The pth quanflle, or the quanttle ot order p

o_ the distribution or population, denoted by ¢_, is defined
as t._- root of the equation G (_) = p; that is

Summing over all zones, the output sign,, _ is

- f:S(t) = _ Ely(t)w_(t))u_(t) (32) p= dG(x) = g(x)dx _
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Tile corresponding sample quantih, z_, is defined as fol- a/and cry.In test D we assume that a :: a_ --- _,. is known

lows: If the sample values are arranged in nondecreasing and t_, is unknown; we test whether _t_--: t_1or tL..,= _t, + 0,

order of magnitude fl _: 0. Ill test D, the assumption that c, is known is not
used. In test E we assume that both /_ = _1 = t_z and cr_

are unknown and test whether a_ = _,, or c,_ = 0_,,, 0 > 0.

In tests F and F, we are given n independent pairs of

then x_,, is called the ith ordel statistic and observations (x,, y_), (x:, y,_,), • - - , (x,,, y.) taken from two
normally distributed populations where g_ (x) = N (_, c,_)

z, =--xl,,,,j._ and g...(y)= N(_..,_,_). In test F we assume that _t,, /_,
a_, o.. are known and test whether p : 0 or p :_ 0. In lest

where [np] is the greatest integer _ np. we assume that both # :/_ = _ and c, = c,1 = or=are
unknown and again test whether t' : 0 or p :_ 0.

If g (x) is differentiable in some neighborhood of each
quantile value considered, it has been shown (Ref. 32) In estimating p, it will first be assumed that the as-

that the joint distribution of any number of somple sumptions of test F hold. This estimator will be denoted

quantiles is asymptotically normal as n--* _ and that, by _,. Foa the second estimator _.. it will be assumed that
asymptotically, # : _, = _ is unknown and that e, and c,z are known.

E(zp) = _p Table 3 summarizes the above hypotheses and as-

p (1 -- p) sumptions.
Var (z_) -

• n g" (_) Table 3. Hypotheses and assumptions relating to

-p_ (1 - p_)T_ the tests, and assumptions relatingt),-' = _Pz (1 -_)_] to estimating/q and p_

Alternative

where p,., is the colrelation between z_, and zpz, p] < Pz. Test Nullhypothesis hypothesis Assumptions
The statement "g (x) : N (_, _,)" will mean that the random _ }- o known
variable under consideration is normally distributed with A f g I') = N (#,, o) g Ix) : N 0t.-, o) e unknown

mean t_, variance ¢'-', and has the density function g (x) s $ (x) = N I#, _':1 g {x) = N _, od # unknown

associated with it. _ "t g' {a) : N _u,o) g, (x) : N (#, e) a and ), independent;
known,# unknown.

_ _ (y) ----N (#, 0) ¢_ (r) = N _ q-#, ¢) x and y independent;3. Hypotheses and Assumptions e_0 # ond _ unknown,

For comparison purposes, the designation here of the [ i_t(a) : N _a, ¢) 9, (x) : N _, o) a and y independent;g:-(Y)= N (_u,_r) g: I)') : N _u,dlo') # and o'unknown.
tests will coincide with that used for the tests in e>o

the reports, p _g,(xl::-N(t_,.o,) g,_x) : NI#,.o',) #,.#aoo't.o',known

F '¢ _ (y) = N (#=o_) Ih (7) = N (#,Pd #, = #, "_/_, and
In test A, we are given a set of fl independent observa- p = 0 p_0 . = o, =., unknown

tions from a normal population with known variance ¢_; E,limatinOp, #,, #,, m0¢,0known

the test is designed to decide whether the mean _ has a Ss_i,otin0_ #t :/_ = _aunknown

value of t_, or a value of t'-_. In test A, the assumption j *, ando. know.
that ¢2 is known is not used.

In test B, we test whether the standard deviation c, has J. Astrometrics: A New Method For Extracting The

a value of ¢, or a value of e._. When more than one Reflecflvily Distribution From Planetary

quantile is used, it is not necessary to assume that I* Radar Data, S. Zoh_ris known.

In tests D, _), and E, it is assumed that we are given !. Introduction
sets of independent samples taken from two independent The present approach to the extraction of the planetary

normal populations with means t_, and _ and variances reflectivity distribution from the range gated reflection
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off the observed planet is based on the spectrum of this

signal. In practice, the spectrum is computed from the

signal's measured autocorrelation. A recently derived re-

sult (SPS 3%43, Vol. IX,', pp. 330-338) makes it possible _ _'sine _-

to extract the information directly from the autocorrela- /
tion function. Computationally, this method is markedly _ "_"'_1
different from the spectral approach, being based on a dif-

ferent set of assumptions. There are indications that the

new method will more closely approximate reality, flow-
ever, this is difficult to substantiate on theoretical grounds;

only test case comparisons between the two methods will vc__ __cl_vc+_ _ _
tell which is better. In the meantime, the main importance

of this new method lies simply in its providing a different

path to the desired reflectivity distribution. Thus, any fea-
ture or details which show up in both processing schemes

could be considered with a high degree of confidence as

representing physical reality.

Fig. 24. Coordinates for the reflectivity distribution

2. Formulation of the Problem vA appearing in the Bessel function argument is half the
Let the reflectivity distribution be subjected to a paral- normalized limb-to-limb bandwidth; ve is the normalized

lel projection along the line of sight onto a plane per- frequency of the subradar point (Fig. 24). Here ho, a_ are
pendicular to this line. We introduce the coordinates 0, v computable from the range-gate and backscatter func-

in the projection plane as shown in Fig. 24. These are tions, while Wr and W are, respectively, computable and

associated with range and doppler shift, respectively. The measurable powers in the radar system.
refleetivity distribution can now be expressed as a two
dimensional Fourier series in those two variables;:' We have also shown that for a featureless "grey planet"

,._ Eq. (2) leads to the much simpler samples g_ given by:"
A

F(O.v): _ b.,e '_'_"_+'°'

....... g/¢ = COS(2rrkv_) _ %a_J_(_rk_). (3)
with k_o

b_,,, = b,, ; b,,-r = b,_. (1) Eqs. (2) and (3) are the basis for the new extraction
procedure.

; We have shown (SPS 37-43, Vol. IV, pp. 330--338) that the Our purpose is to find the reflectivity distribution

Nyquist rate samples of the (normalized) range-gated _(O,v), given the correlation coefficients p_. Equivalently,

_ autocorrelation function of the refected signal (pk) depeLd our problem can be referred to as the inversion of Eq. (2);

on the b,, Fourier coefficients as follows: namely, given the set pk, find the get b,, It should be real-
ized from the outset that if only the first I sampl_ are

available, then there is no unique _(O, v) that fits them;

Pk= h,, _ akb.. cos [2_- (n + k) v_] rather, there is a large family of possible solutions, all of
_,.,.=_., which share the first I COrrelation COefficients. We can

ii × 1_ •�¬�[=i n + k) _] ; (2) narrow the range of possible functions to a single one only
by introducing specific assumptions to compensate for the
missing data. What assumptions should one make? Here

"Strictly speaking, F (#, _) is not the refleetivlty function defined m we have only some simple guidelines, such as the require-
SPS 3%43, Vol. IV, pp. 330--338; it is the so-c_dled"feature rune- ment that the assumptions should be plausible and that

_, tion." The distinction between the two, however, is not Important the solutions based on different assumptions should not be
._ here; hence, we use somewhat loosely the term "rellectivRy distri-
2 butlon." For details, as well as the justificationof Eq. (1), see

SPS 37-43, Vol. IV, pp. 330-338. "e, is Neumann's symbol (e, = o, except ¢. = I ). i
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drastically different. In the final analysis, of course, the This, however, can be expressed in ternls of the correla-

assumptions should l_'ad to manageable mathematics, tion coeffcietits of the corresponding "grey planet" Eq. (3),
yielding

It is with this background in mind that we approach the

inversion of Eq. (2). Our fundamental assumption is that WT K'_

all b,,r'S vanish for n, r greater than some specific bounds ol, = h,, -_ _ gk-, b,. (4)consistent with the amount of data available, The basic ....

justifica...,n for this is that F (0, ,,), being a function repre-

senting some aspect of physical reality, is not expected to
The computation of the g-parameters has been discussed

have jumps or discontinuities. Its Fourier coel_cients b,r
in detail (SPS 37-43, Vol. IV, pp. 330--338). Of the remain-

should, therefore, decay to zero with increasing n, r.
ing parameters, Wr and h,, can be computed; whereas W,

the signal power, can be measured. We see, therefore,
The effect of this asst_mption on Eq. (2) is to replace the that if the pk's are measured, the only unknowns in Eq. (4)

infinite summations over n, r with finite ones so that our are the b,'s. In practice, however, we never get the auto-

problem is essentially reduced to the solution of a finite correlation of the received signal directly. The receiver,

set of linear equations. A possible approach to the prob- from whose output we try to obtai]J the 0k's, will usually
lem is to obtain the auto('orrelation for several adjacent have a nonflat frequency response, as well as its own noise

_ones covering the region of interest and then process the in the frequency band of interest. Under these conditions,
data of all the zones simultaneously. Such aprocedure the measured autocorrelation is not the signal autocorrela-
does actually lead to a reasonable estimate of F (O, v), and tion appearing in Eq. (4). It is, however, _imply related

we shall return to it later on. However, the amo, , to it. Thus, it has been shown (SPS 37-31, Vol. IV,
computation involved in such a scheme is prohibitive a:zd pp. 315--320) that pk is related to measured parameters

• seems to rule this approach out as a practical solution, by the following equation:

An alternative approach which does lead to a practical
scheme is to use sufficiently narrow gates so that F (O, v) flmi - ni ---a _ ni-kp_ (5)k = -¢¢

could be assumed independent of # over the zone. This

results in the processing of each zone independeLzly of where
the others, leading to a drastic reduction in computations.

We consider this approach in detail in the next subsection.
ni = ith normalized correlation coefficient of the

receiver output when fed with white noise;
3. The New Extraction Method

m_ = ith normalized correlation coefficient of the

Our initial task is to obtain the special case of Eq. (2) receiver output when a signal is received;
for the constraint that F (0, v) be independent of 0. This

constraint is satisfied by assigning the following form W signal power at receiver input.
to b,,: a = W"'_-= noise power at receiver input '

WH signal plus noise power at receiver euttmt

b,, = b,,oS,o -----b,8,o. B = W-"_-= noise power at receiver output

Substitution of this in Eq. (2) leads to _
Obviously, the equation relating the unknown b,'s to

measured entities is obtained by substituting Eq. (4) in

t),=ho_7_t_ TM b.cost21r(k+n)v,] Eq. (5). This yields

1 WN, E. v, Fo"VCT(#m'- .,) = (e)
X _ ,_,ad_ [, (k + n) _]. k, j.-.

k=O

We pause here briefly to point out an interesting aspect

'Whe vanishingof the high order b.'s will be handledlater on. of Eq. (6). The, basic fact leading Eq. (5) is that for band-
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limited signals, the effect of a filter on the aut.-correlation where "_"_

can always be repr"sented in the form ""

S, = _ n_ kgk-]. (9)

k _ From Eq. (8) it is obvious that to solve for the b/s we

where must have all v, fol l if _]. The solution would then in-
volve the inversion of the matrix S (whose ij element is So)

x_ --- autocorrelation coefficient of input signal; of order (2] -_-i). We turn our attention now to this matrix.

y, -- autocorrelation coefficient of output signal;
Usually, only a finite number d nk's is available. Hence,

p_ -- a set of parameters characterizing the filter and as before, we compensate for our incomplete information

derivable from its more familiar transfer function, by setting the unavailable nk's to zero. Conceptually, how-
ever, the situation here is different from the previous one.

In view of this, we may rephrase Eq. (6) The transfer function of the receiver cou]d, in principle,

be approximated quite well by a rational frequency func-

( ) tion. From the finite set of parameters of this rational func-v, = n,-k _ gk-ibs tion, one could compute the infinite set of nk's. This would .._
k = --_ j = -_

then require the computation of an infinite number of gi's.

and take the attitude that the v,'s are the autocorrelation Thus, the motivation for the truncation of the k summa-

coefficients of a signal obtained by passing the "feature tion in Eq. (9) is not so much a lack of data as it is a desire

, signal" (the "signal" whose correlation coetfieients are the to obtain a practical computation scheme.

b/s) through two filters in cascade: the "spherical filter"
(parameters g_) and the filter representing the receiver The truncation is effected by setting

(parameters n,) (Fig. 25).

n_---0 forlk I> K.'_
From this point of view it is quite clear that obtaining

the feature function is essentially identical with the more
familiar problem of obtaining a receiver input autocorre- Hence

!ation from its measured output autocorrelation. The only
difference is that we have here a "receiver" with a more _+A

complicated (but computable) transfer function. S_ = _ ni-_gk-j. (10)
k--_-£

We return now to the solution of Eq. (6). Invoking our

assumption concerning the vanishing of the high order We proceed now to prove that S is a symmetric Toeplitz

b/s, we set matrix? r This is simply effected by setting k - j = q in
Eq. (10). Thus

bj = 0 forIll> I. (7)
(i-Jl �8+Hence Stj -- _. n(t_t)_qg q = S,_j. (11)

q=li-/)-K

v, = _. _ .,___j bj = _. S.bj (S)
_=-: _=-** J---: We see that the dependence of S_j on t, f is only through

the difference (i- IF).Hence, the matrix S is a Toeplltz
matrix.

=PresentJPL practice is to use the same equipment to obtain both
vi _ RECEIVER _ "SPHERICAL_ b/ m, and n,. Hence K = ].FILTER" -

"A matr/x # whine # element _,s b a function o/I - I ratherthan
i, i separately wm have one and the same element along every
diagomd, superd/agonal or mbdiagomd. It is known as a Toepl/tz

Pig. ',15. The system effe_ on the b,°s nmb/x.
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To prove symmetry we r,'writc Eq. (11) as follows We conclude that to solve Eq. (8) and obtain the b/s
we }lave to invert a symmetric Toeplitz matrix of order
(2/ _ 1). This is readily accomplished even for large ] by

_"_ the method of W. F. Trench (Ref. 33). Preliminary analy-Sj= _ n__qg,I.
q t-^ sis indicates, for example, that the complete solution of

Eq. (8) for ] = 50 would take about 4 scc on the IBM 7094.
Hence

We turn now briefly to the general case mentioned
^ i. earlier in which we d_ not neglect the 0 variation of tile

S i, = _ n-k-qg_, feature function across the observed zone. Instead of hav-
q_-(_ ¨�àto deal with one autoeorrelation function, we now

consider (Z + 1) such functions corresponding to (Z + 1)

The evenness of the autocorrelation functions n (r), _ (r) different zones. To distinguish among these we attach an
now yields extra index to p, h, a, w. Thus, we have for zone z

+^ Ps,.-,ho.:, ak,, W,.
S-k---- _, nkqgj = Sk.

i k-K With this terminology, Eq. (2) becomes

pk_=h,,..-_ " _ b,,ak:c_s[27r(n + k)v¢]]L,[Tr(n + k)_]

(z = 0,1, • • •, z). (12)

In analogy with the g,,-parameters introduced in the special ease, we introduce now the Y,,_.-parameters defined as
follows:

Lh r ^
Y,,,_-= ,,.-_ cos (2_m_) ak..l_., (_mv)

oo

1 Wr _'_ , ,,= - l,-k(,_m_)]2 h.,:_ cos(2,_mv_)z...a ,_a_..[I,._(_n,) + " ^ .
k=0

Applying this to Eq. (12) we get

eG

.k: = y" Yk_..,...b. ,.

We note that Y.,,.. is an even function d r. Combining this with the symmetry properties of b, (SPS 37-43, Vol. IV,
pp. &30-.3_), we get _.

e0

*Ep_,= -_ ,,,, (Yk-,.,,, + Yk.,.,,,)b,,.
m, r:O

Finally, in analogy with Eq. (7) we assume

b,,=0 _orInl>Z or Irl>Z,
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where I is the number of available correlation coeflq(ients in each of the Z -! 1 zones• This leads to

r_Z

*Epj._=--_- e,, (Yk .... : + Yk...... :)b .... (13) ,
It, r fl

This equation can be solved b) tile simple artifice of In the pre';ent JPL system, a typical cast, would invoh,e
arranging b,r and Pk:as column matrices. Specifically, let I -- 50 Z -- 8. Hence, the matrix to be inverted is of
us introduce the following two column matrices of order order 459. It is doubtful whether such an inversion should
I + 1 even be attempted in view of the accumulation of errors

and prohibitive cost•

- f'P_.z I b ....

/bt. _ Attacking the same problem with the previous scneme,

p,..- we would treat each of the 9 zones separately (neglecting

^ - _ _,L i the0 variationinsideazone) andendupbyinverting

p-"- ; = 9 symmetric Toeplitz matrices of order 11)1.Solving all 9
matrix equations would take about 33 sec on the IBM 7094.

LP ._ b,r.

* and the square matrix Yr: of order (I + 1) whose k, n ele- K. Astrometrics: Elimination of Charged Electron
ment is given by Effects from Ranging Data, P. E. Reichley

1. Summary
^ =.._.y

(Yr.')k, 2 ( k-,. ,•_-+ Yk.,, r, =). The effect of charged electrons on ranging data in the
ionosphere and interplanetary medium plays an important
role in the growing need for greater tracking accuracies.Eq. (13) can now be expressed in terms of these matrices

as follows: We present in this article a method of obtaining the range
change from tracking point to tracking point with effects

^ ,, ^ due only to the troposphere. The effects due to the charged
'_o" "YooY,, • • • Y,,z "_,,- electron distribution appear as second order effects in this

_'_ Y_,,Yu ' • " Y_z _ method. These results are obtained under the assumption
that the troposphere and charged electron distributions

I ' = " are spherically symmetric and that the spacecraft is being
! " " tracked with both doppler and range points (obtained by

• ^" ^" X " a ranging code). This range change can then be utilized
^ Y,.oYz, " " Yzx.. gv,_p_.. " . . to yield the true range with or without a constant bias, IL

depending on whether the true range is known at a prior
time or not. Ranging accuracies of < 1 m are possible with

We see that solving for the (I + 1)(Z + 1) required b,, this method.
coefficients calls for the inversion of a matrix of order

(l + 1)(Z + 1).
2. Introduction

No special exploitable structure is evident here and the The range to a spacecrah in geocentric polar coor-
matrix is not even symmetric. It should be pointed out in
passing that there is an alternative formulation in which dinates, as determined by a range code, is given by
each submatrix turns out to be a Toeplitz matrix though (SPS 37-29, Vol. IV, pp. 229--239)
of almost twice the order (21 + 1). However, it is not

f,." rn (r) ne(r) drobvious how such a structure could be expblted to sire- R = (_--_r)'--" b-_ (1)pi_y the inversion.

i
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where n (r) and n_(r) are the phase and group indices of The range to a spacecraft in geocentric polar coordi-
refraction of the signal; r,,and rl are the station and space- nates as determined by doppler is given by (SPS 37-29,
craft radius vectors; and b is the impact parameter of the Vol. IV, pp. 229-239)
ray path.

theWeformShallassume that the phase index of refraction has Rd = f". (r'-'n'-'rn"(r)(r)-drb'-')'_ (4)

n_(r) = 1 4 Ef (r) _ 1 + _(f, (r) - f2 (r)) (2)
and the range rate determined by doppler is simply

where I[ (r) l_ 1 for r,,_ r, < _ and e is a positive param-
eter. We shall consider [, (r) to be frequency independent,
corresponding to the troposphere, and f_(r) to be frequency /_ d Ra
dependent, corresponding to the ionosphere and interplan- = dt (5)
etary medium. We shall consider frequencies at L-band

(900 Mhz) or higher, in which case max It (r) > max f.. (r) A perturbation solution for the impact parameter is
and e = 2a where a is the ground level refractivity (SPS given by (SPS 37.43, Vol. IV, pp. 314-321)
37-43, Vol. IV, pp. 314--321). If we neglect absorption and
external magnetic fields the group index is given by

(SPS 37-43, Vol. IV, pp. 314--321) b = bo + eb_ + e_b_+ 0 (_) (6)

1 + _f,(r)
, ng (r) = n (r) (3) where

r,,r_sin 0
bo =

(rg + r'f - 2r,,r, co:-9)'/2

1 (rr-bo) (ro-bo) z, ', rf(r) drL(rt -- bo) - (to - bo) (r_- bg)V,

(rl bo) (ro bo)'_ '(rg (r_b_,= - _ z._ ___ ;f._._, b.b_ ---bg)g(r, bo) (to - b_),_ - bg)_

1 b t f," r[(r)dr + 3 bofror' r3p(r)dr 3 b2ob' f,', rf(r, dr ] (7)- (r - (r"- bo') 9. j

where 0 is the angular separat.lon between r,,and r,. Hence, the range change due to doppler count from time
t, to time t,.,, from Eqs. (4) and (5), is

3. Eliminationof ChargedElectronEffectsto FirstOrder

In ranging a spacecraft we shall assume that at some

time to the range to the spacecraft is obtained by means A_Rd n_] R_ = 1%(t.t) -/h (tO (8)
of a range code; then the doppler shift is obtained and .,,,
counted incrementally (in 1-see intervals for example)
until some time t. at which time the range is obtained by
means of the range code. This process is then repeated The range change due to range code ranging from time t,
from time t, to time t._,from time t, to time t,, etc. to t., is, from Eq. (1),

Since we are incrementally counting doppler, this is

equivalent to integrating Eq. (5) from time t, to time t,.,. A,R -- R (t,.,) - R (t,) (0)

$14 JPL S@AC|PROGRAMSSUMMARY 37.44, VOL. IV

i I ..... i i II [ I1 II_is im

1967019812-324



A perturbation solution for R (t,) is (SPS 37-43, Vol. IV, pp. 314-321)

1 /rl(t., r(f,(r) -_ [...(r))drn (t,) --=-R, (t,) -t g,. , (r" - b_(t,))"z

' rf""r'_(_'(r)--[.,(r))([,(r)+ 3[:(r))dr f"'",' r([,(r)+ 3[2(r))dr]--ff'"t.J,o _..,--_0(_)_ -2-,,(t,)b,(t,).,,.,, _---_,)_ j +o(H) (10)

where R, (t,) is the straight line or true range, and b,, and b, are given by Eq. (7). We can obtain the same type of solution
for R_(t,) by substituting Eqs. (2) and (6) into Eq. (4) and expanding in powers of t. This yields

1 f"'"' r([,(r)-f...(r))dr

Ra(t,) = R,(t,) + _, Jl (r" (t,)),_,i

+_t-' 2b,,(t,)b,(t_) ,, _rr-__-_t_ - , _r.,-b?,(t,)). _ j+0(t 3) (I1)

after utilizing Eq. (7).
%

If we add Eqs. (8) and (9) and divide by 2, we have, from Eqs. (10) and (11),

1 t'""'"' r_a(r)dr

a,R, _ _,R +2a,R,. = R, (t,+,) - R0 (t,) + _ t j,. (r" - bg (t,+ 0) vJ

l f':_',' rf,(r)dr II Jf"'"'"r(_l(r)+t"(r))dr,,._ _1bo (tO b, (tt)-_t , (r__ bg(t,))j,_ + F" _bo(t,+_)b_(t,._) (a b._(t,.t))_

f',,',' r(f,(r)+f.,(r))dr 1 f',",.,'r_(t_(r)-f.-;(r))dr 1 f'_,',, r_(f'_(r)_f.-'.,(r))d(]x _,. (r"- bo'(t,))'_ - _ _,. (r'-'- _'(t,.,)_ + sI,. (r_- _o_t,))_ J + 0(,_)
(12)

The quantity A_Rt, as seen from Eq. (12), represents the range change due to spacecraft motion plus, to firstorder, the
change due to the troposphere alone. The f,-terms have disappeared from the ,-term which is our main achievement.

The coefficient of t _ in Eq. (12) consists of the difference of two terms of the form

i We can show that the above quantity multiplied by ,_ is always less than 8 m for ranging in the solar system, exclud-
ing signals that lutss dose to the Sun. The upper limit of 8 m is obtained when the signal path grazes the horizon and

i the spacecraft is just outside of the troposphere. As the q_a_ moves farther away, the effeev of the ionosphere and
., interplanetary mediumreducesEq. (13) in magnitude. Hence, we my neglect the melBcient d ,' in F..q.(1o).
i
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Since ]_(r_ -=0 outside ,,f the trol)Osl)here, we can wrltc We see that the true range is obtained at t,, with tropo-
integrals of the form spheric corrections at t. and t,. If the trtle range is not

known, then -/_'(t,,) can be obtained with a constant bias.

_', rf,(r)dr /ii: r/,(r)dr Upl)n(_)mbini'igEqs'(l=_and(17)T-- . (r_ __b_;)'_ (r_-- b;i)"-' (14)
ra 1

where r_, is the radias vector to the upper liioit of the _ .x,Rt
troposphere. Hence we can rewrite Eq. (12) (neglecting .A'(t,,)--=R(t,,)+
terms of 0 (_) and higher) ' "

l 1

= R, (t_) + _ ,'r (t,) + _ d (t,,) (19)1 1
a,Rt ==R, (t,+ ,) - R, (t,) + _ rr (t,.,) - S_eT (t,). (15)

Since it can be shown (SPS 37-43, Vol. IV, pp. 314-321) which yields the true range with a tropospheric correction
that the coefficient of r" in Eq. (10) is of the same magni- at t, and a constant bias of s:,_1(t,,). This bias can be mini-
rude as the coefficient of F" in Eq. (12), we have (negh.ct- mized by choosing t., during the night and or when the
ing terms of 0 (r=) and higher) spacecraft is at its highest elevation angle. As long as the

spacecraft is outside of the influence of the t.op,_sphere,

1 . 1 the corrections for the troposphere are not influenced by
R (h) = R, (t,) + _ _T(t,) + _I (t,) (16) errors in the rang(' to the spacecraft, which follows from

Eq. (14).
' where

I = (_ --_,, (17) 4. Conclusions
The basic advantage of the ranging method presented

If the true range to the spacecraft is known at some in the article is that high precision ranging data free of
range point at time t,,, then the range ,A' at later times is charged electron effects can be obtained. The typ_ of data
obtained by means of Eq. (15), i.e. required is precisely the type of ranging data that is ob-

tained by tracking devices currently in use in the deep
___ space net. The technique, which is very simple, could

-)_(t,) = R, (t,,) + E _Rr easily be automated at the tracking stations. Furthermore,since tracking is rarely done at low elevation angles, the
_--o error (one way) of 8 m can easily be reduced by a factor

1 1 of 10; this is equivalent to tracking accuracies on the order
= R. (t_) + _ tT (t.) - _"tT (t.) (18) of 10 nanosec.
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